Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Prep Biochem Biotechnol ; 47(9): 889-900, 2017 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-28816622

RESUMEN

Recombinant simian IL-15 (siIL-15) was obtained for the preclinical assessment of an anti-human IL-15 vaccine. For this purpose, the cDNA from peripheral blood mononuclear cells of a Macaca fascicularis monkey was cloned into a pIL-2 vector. The siIL-15 was expressed in Escherichia coli strain W3110 as an insoluble protein which accounted for 13% of the total cellular proteins. Inclusion bodies were solubilized in an 8 M urea solution, which was purified by ion exchange and reverse phase chromatography up to 92% purity. The protein identity was validated by electrospray ionization-mass spectrometry, confirming the presence of the amino acids which distinguish the siIL-15 from human IL-15. The purified siIL-15 stimulates the proliferation of cytotoxic T-lymphocytes line (CTLL)-2 and Kit 225 cells with EC50 values of 3.1 and 32.5 ng/mL, respectively. Antisera from modified human IL-15-immunized macaques were reactive to human and simian IL-15 in enzyme-linked immunosorbent assays. Moreover, the anti-human IL-15 antibodies from immune sera inhibited siIL-15 activity in CTLL-2 and Kit 225 cells, supporting the activity and purity of recombinant siIL-15. These results indicate that the recombinant siIL-15 is biologically active in two IL-15-dependent cell lines, and it is also suitable for the preclinical evaluation of an IL-15-based therapeutic vaccine.


Asunto(s)
Interleucina-15/genética , Macaca fascicularis/genética , Vacunas Sintéticas/genética , Animales , Línea Celular , Clonación Molecular/métodos , Escherichia coli/genética , Humanos , Interleucina-15/inmunología , Macaca fascicularis/inmunología , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Linfocitos T Citotóxicos/inmunología , Vacunas Sintéticas/inmunología
2.
Meta Gene ; 7: 48-55, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27014583

RESUMEN

Elasmobranchs are one of the most diverse groups in the marine realm represented by 18 orders, 55 families and about 1200 species reported, but also one of the most vulnerable to exploitation and to climate change. Phylogenetic relationships among main orders have been controversial since the emergence of the Hypnosqualean hypothesis by Shirai (1992) that considered batoids as a sister group of sharks. The use of the complete mitochondrial DNA (mtDNA) may shed light to further validate this hypothesis by increasing the number of informative characters. We report the mtDNA genome of the bonnethead shark Sphyrna tiburo, and compare it with mitogenomes of other 48 species to assess phylogenetic relationships. The mtDNA genome of S. tiburo, is quite similar in size to that of congeneric species but also similar to the reported mtDNA genome of other Carcharhinidae species. Like most vertebrate mitochondrial genomes, it contained 13 protein coding genes, two rRNA genes and 22 tRNA genes and the control region of 1086 bp (D-loop). The Bayesian analysis of the 49 mitogenomes supported the view that sharks and batoids are separate groups.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA