RESUMEN
In Chile, honey is produced from several native species with interesting biological properties. Accordingly, those attributes are present in Chilean honeys owing to the presence of phenolic compounds inherited from specific floral sources. In recent years, the exported volume of Chilean honeys has been increased, reaching new markets with demanding regulations directed toward the fulfilment of consumers' expectations. Accordingly, there are countries with special requirements referring to Paenibacillus larvae spore-free honeys. This microorganism is the pathogen responsible for American foulbrood disease in beehives; however, antibiotics are not allowed when an apiary tests positive for P. larvae. On the other hand, it is mandatory to have an accurate method to remove the potential presence of spores in bee products intended for export. Exposure to ionizing radiation can be an efficient way to achieve this goal. In this work, 54 honey samples harvested from northern, central and southern Chile were analyzed for physicochemical patterns, total phenols, antioxidant activity and antiradical activity. Honeys with and without spores were exposed to ionizing radiation at three levels of intensity. Afterwards, the presence of spores and the effect on phenol bioavailability, antiradical activity and antioxidant activity were measured again. This research presents results showing a positive correlation between the percentage of prevalence of native endemic species in the set of honeys analyzed and the capacity to resist this process, without altering their natural attributes determined before irradiation treatments.
RESUMEN
Spodoptera frugiperda control methods have proved to be inefficient, which justifies the search for new control measures. In this search for botanical insecticides for controlling S. frugiperda, the following were evaluated: (i) the toxicity of essential oils (EOs) from Cinnamodendron dinisii, Eugenia uniflora, and Melaleuca armillaris; (ii) the effect of EOs on life table parameters against S. frugiperda; (iii) the chemical characterization of EOs; and (iv) the in silico interaction of the chemical constituents present in the three EOs with the molecular targets of S. frugiperda. The EO from E. uniflora had the lowest LD50 (1.19 µg of EO/caterpillar). The major compounds bicyclogermacrene (18.64%) in C. dinisii and terpinolene (57.75%) in M. armillaris are highly predicted to interact with the octopamine receptor (OctpR). The compound 1,8-cineole (21.81%) in M. armillaris interacts mainly with a tolerant methoprene receptor (MET) and curzerene (41.22%) in E. uniflora, which acts on the OctpR receptor. Minor compounds, such as nerolidol in C. dinisii and ß-elemene in E. uniflora, are highly ranked for multiple targets: AChE, MET, OctpR, and 5-HT1. It was concluded that the EO from E. uniflora negatively affects several biological parameters of S. frugiperda development and is promising as an active ingredient in formulations for controlling this insect pest.
RESUMEN
The objective of this study was to evaluate the antioxidant capacity by spectrophotometric methods, the in vitro and in vivo antifungal effect against Lasiodiplodia theobromae and the constitution of the essential oils (EO) of oregano and thyme in comparison with their commercial counterparts. The results showed by the EOs of extracted thyme (T-EO), commercial thyme (CT-EO), extracted oregano (O-EO) and commercial oregano (CO-EO), demonstrated antioxidant profiles with a radical neutralizing potential (DPPHâ¢) of IC50: 1.11 ± 0.019; 1.08 ± 0.05; 40.56 ± 0.227 and 0.69 ± 0.004 mg/mL, respectively. They also revealed a ferric ion reducing capacity (FRAP) of 93.05 ± 0.52; 97.72 ± 0.42; 21.85 ± 0.57 and 117.24 ± 0.64 mg Eq Trolox/g. A reduction in ß-carotene degradation of 65.71 ± 0.04; 51.97 ± 0.66; 43.58 ± 1.56 and 57.46 ± 1.56 %. A total phenol content (Folin-Ciocalteu) of 132.97 ± 0.77; 141.89 ± 2.56; 152.04 ± 0.10 and 25.66 ± 0.40 mg EGA/g. Chemical characterization performed by gas chromatography mass spectrometry (GC-MS) showed that the respective major components of the samples were thymol (T-EO: 45.78 %), thymol (CT-EO: 43.57 %), alloaromadendrene (O-EO: 25.17 %) and carvacrol (CO-EO: 62.06 %). Regarding antifungal activity, it was evident that at the in vitro level, both commercial EOs had a MIC of 250 ppm while the extracted thyme EO had a MIC of 500 ppm; In vivo studies demonstrated that the application of thyme EO had a behavior similar to the synthetic fungicide, slowing down rot in bananas under storage conditions. Finally, partial least squares discriminant analysis (PLS-DA) and heat maps suggest p-cymene, carvacrol, linalool, eucalyptol, 4-terpineol, (z)-ß-terpineol, alkanhol, caryophyllene, ß-myrcene, d-limonene, α-terpinene, α-terpineol, d-α-pinene, camphene, caryophyllene oxide, δ-cadinene, terpinolene and thymol as relevant biomarkers associated with the assessed bioactive properties demonstrating the potential of extracted essential oils for the development of a botanical biofungicide.
RESUMEN
Vernonia cinerea (L.) Less. is a perennial herbaceous plant found mainly in tropical areas, particularly in Southeast Asia, South America, and India. Various parts of V. cinerea have traditionally been used in folk medicine to treat several diseases, such as malaria, fever, and liver diseases. V. cinerea has so far yielded about 92 secondary metabolites. The majority of these are sesquiterpene lactones, but triterpenes, flavonoids, steroids, phenolics, and other compounds are present as well. V. cinerea crude extracts reportedly exhibit anti-inflammatory, antiprotozoal, antidiabetic, anticancer, antimicrobial, antioxidant, and renoprotective activities. This study aims to provide the latest up-to-date information on the botanical characterization, distribution, traditional uses, phytochemistry, and pharmacological activity of V. cinerea. Information on V. cinerea was thoroughly reviewed. The literature published between 1950 and 2024 was compiled through online bibliographic databases, including SciFinder, Web of Science, Google Scholar, PubMed, ScienceDirect, Springer Link, Wiley, and the MDPI online library. The keywords used for the literature search included Vernonia cinerea (L.) Less. and the synonyms Cyanthillium cinereum (L.) H.Rob., Conyza cinerea L., and various others.
Asunto(s)
Medicina Tradicional , Fitoquímicos , Extractos Vegetales , Vernonia , Vernonia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Fitoquímicos/farmacología , Fitoterapia , Animales , América del Sur , Asia SudorientalRESUMEN
We investigated the larvicidal activity of the essential oil (EO) from Tetradenia riparia and its majority compound fenchone for controlling Culex quinquefasciatus larvae, focusing on reactive oxygen and nitrogen species (RONS), catalase (CAT), glutathione S-transferase (GST), acetylcholinesterase (AChE) activities, and total thiol content as oxidative stress indicators. Moreover, the lethal effect of EO and fenchone was evaluated against Anisops bouvieri, Diplonychus indicus, Danio rerio, and Paracheirodon axelrodi. The EO and fenchone (5 to 25 µg/mL) showed larvicidal activity (LC50 from 16.05 to 18.94 µg/mL), followed by an overproduction of RONS, and changes in the activity of CAT, GST, AChE, and total thiol content. The Kaplan-Meier followed by Log-rank (Mantel-Cox) analyses showed a 100% survival rate for A. bouvieri, D. indicus, D. rerio, and P. axelrodi when exposed to EO and fenchone (262.6 and 302.60 µg/mL), while α-cypermethrin (0.25 µg/mL) was extremely toxic to these non-target animals, causing 100% of death. These findings emphasize that the EO from T. riparia and fenchone serve as suitable larvicides for controlling C. quinquefasciatus larvae, without imposing lethal effects on the non-target animals investigated.
Asunto(s)
Culex , Lamiaceae , Larva , Aceites Volátiles , Estrés Oxidativo , Animales , Aceites Volátiles/farmacología , Aceites Volátiles/química , Culex/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Larva/efectos de los fármacos , Lamiaceae/química , Insecticidas , Canfanos , NorbornanosRESUMEN
Background: The excessive use of synthetic insecticides in modern agriculture has led to environmental contamination and the development of insect resistance. Also, the prolonged use of chemical insecticides in producing flowers and tomatoes in greenhouses has caused health problems for workers and their offspring. In this study, we analyzed the efficacy of mandarin peel (Citrus reticulata L.) essential oil (EO) as a natural insecticide against greenhouse whitefly (Trieurodes vaporariorum W., Homoptera: Aleyrodidae), a common pest in greenhouse production of different crops. Methods: Petroleum ether (PET) and n-hexane (HEX) were used as solvents to extract essential oil (EO) from tangerine peels. Results: The yield of EO was 1.59% and 2.00% (m/m) for PET and HEX, respectively. Additionally, the insect-killing power of EO was tested by checking how many greenhouse whiteflies died at different times. The results showed that PET and HEX extracts of tangerine EO effectively controlled greenhouse whiteflies. Furthermore, with both solvents, a 12.5% (v/v) application was as practical as the commercial insecticide imidacloprid. Further characterization tests with the polarimeter, FTIR, HPLC-RP, and GC-MS showed that the essential oil (EO) contained about 41% (v/v) of d-limonene and that this compound may be responsible for the observed insecticidal properties. Conclusion: Therefore, tangerine peel essential oil is an excellent botanical insecticide candidate for controlling greenhouse whiteflies.
Asunto(s)
Hemípteros , Insecticidas , Aceites Volátiles , Animales , Humanos , Insecticidas/farmacología , Agricultura , Aceites Volátiles/farmacología , Solventes/farmacologíaRESUMEN
Tetranychus urticae Koch, a phytophagous mite, is one of the most significant crop pests globally. The primary method employed for controlling T. urticae involves chemical means, utilizing synthesized products, posing the risk of developing resistance. The urgency for novel strategies integrated into pest management programs to combat this mite is becoming increasingly imperative. Botanical pesticides emerge as a promising tool to forestall arthropod resistance. Among these, extracts from Rutaceae plants, abundant in bioactive specialized metabolites, have demonstrated potential as insecticides and miticides. In this study, various concentrations of alkaloidal extracts sourced from the bark of Zanthoxylum schreberi J.F.Gmel. (Rutaceae) were evaluated against T. urticae adult females. Furthermore, the extract's combination with three distinct commercial acaricides (i.e., chlorfenapyr, cyflumetofen, and abamectin) was also assessed for this mite. Chemical characterization of the extract via LC-MS allowed for the annotation of various compounds related to ten benzylisoquinoline-derived alkaloids. The extract, both alone and in combination with commercial insecticides, yielded varying responses, inducing over 40% mortality at 2% w/w, demonstrating a 90% repellency rate at the same concentration, and exerting a moderate impact on fecundity. These treatments extended beyond phenotypic responses, delving into the biochemical effects on treated T. urticae females through an exploration of the impact on four enzymes, i.e., acetylcholinesterase (AChE), glutathione S-transferase (GST), esterases (GE), and P450-like monooxygenases (PMO). Employing consensus docking studies and in vitro enzymatic evaluations, it was discovered that the Z. schreberi-derived extract and its constituents significantly affected two key enzymes, AChE and GST (IC50 < 6 µM), which were associated with the phenotypic observations of T. urticae females. The evaluation of alkaloid-rich botanicals showcases promising potential as a relevant biotechnological strategy in addressing mite-related concerns, offering a pathway toward innovative and sustainable pest management solutions.
RESUMEN
Insects' ethology is an important factor when it is desired to carry out pest management. This knowledge makes it possible to manipulate behavioral activities, repel, or attract insects according to needs and interests. The maize weevil Sitophilus zeamais (Mots., 1855) (Coleoptera: Curculionidae), one of the main stored grain pests, has been the target of studies of behavioral changes studies through natural substances due to its resistance to different insecticidal classes. Thus, this study aimed to evaluate the effect of sublethal concentrations of neem extract and copaiba oil on the locomotor behavior of S. zeamais. The behavioral characteristic considered were walking activity, the frequency of contact of insects with the treated grain mass, and the time spent for this behavior. The walking activity of the S. zeamais increased with exposure to Neem extract and Copaiba oil. In general, the Neem extract and Copaiba oil-induced more contact with grain mass than the control, suggesting an attractive effect on the insect, however more significant for the Neem oil. The insect's behavior was altered, presenting a specific path due to Copaiba oil and Neem extract stimuli. These results indicate that Copaiba oil and Neem extract can be a potential alternative for controlling S. zeamais on stored products since changes in this pests' behavior can reduce qualitative and quantitative grain damage. Thus, the development of products based on Copaiba oil and Neem extract may be helpful for storage pest management.
A etologia dos insetos é um fator importante quando se deseja relizar manejo de pragas. Através deste conhecimento, é possível manipular atividades comportamentais, repelir, ou atrair os insetos de acordo com as necessidades e interesses. O gorgulho do milho Sitophilus zeamais (Mots., 1855) (Coleoptera: Curculionidae), uma das principais pragas de grãos armazenados tem sido alvo de estudos de alterações comportamentais através de substâncias naturais devido à sua resistência a diferentes classes de insecticidas. Assim, este estudo teve como objetivo avaliar o efeito de concentrações subletais de extrato de neem e do óleo de copaíba sobre o comportamento de movimentação de S. zeamais. As características comportamentais consideradas foram: a atividade de caminhamento, a frequência do contato dos insetos com a massa de grãos tratada, e o tempo gasto para realização destes comportamentos. A atividade de caminhamento do S. zeamais aumentou quando os insetos foram expostos ao extrato de Neem e ao óleo de copaíba. Em geral, o extrato de Neem e o óleo de Copaíba induziram mais contato com a massa de grãos do que o controle, sugerindo um efeito atrativo sobre o inseto, contudo este efeito foi mais significativo para o óleo de Neem. O comportamento do inseto foi alterado, apresentando um caminhamento específico devido aos estímulos do óleo de copaíba e do extrato de Neem. Estes resultados indicam que o óleo de copaíba e o extrato de Neem podem ser alternativas potenciais para o controle do S. zeamais em produtos armazenados, uma vez que alterações no comportamento desta praga podem reduzir os danos qualitativos e quantitativos nos grãos. Assim, o desenvolvimento de produtos baseados no óleo de copaíba e no extrato de Neem pode ser útil para o manejo de pragas de armazenamento.
Asunto(s)
Aceites , Control de Plagas , Zea maysRESUMEN
Fall armyworm (Spodoptera frugiperda) is the main species that causes damage to the maize crop in Brazil. In the perspective of studying alternatives of control of this pest that preserve the natural enemies, the aim of this research was to evaluate the insecticidal efficiency of the essential oils of Vanillosmopsis arborea and Lippia microphylla on S. frugiperda and verify the selectivity to the predator Euborellia annulipes. The bioassays were carried out in the Agricultural Entomology Laboratory of the Federal University of Paraiba, using insects, from 3rd instar of S. frugiperda and E. annulipes, originating from mass rearing in the laboratory itself. Dilutions of the oils were performed in Tween® 80 at concentrations of 0, 100, 150 and 200 mg mL-1. 1.0 µL from each dilution was applied to the prothoracic region of the insects. The S. frugiperda mortality was verified by topical contact of V. arborea oil with LC10 = 74.3 mg mL-1 and LC50 = 172.86 mg mL-1, for L. microphyla, LC10 = 51.26 mg mL-1 and LC50 = 104.52 mg mL-1. The observed lethal concentrations for E. annulipes were V. arborea LC10 = 71.3 mg mL-1 and LC50 = 160.2 mg mL-1. While L. microphyla, were LC10 = 50.3 mg mL-1 and LC50 = 134.67 mg mL-1. The essential oils of V. arborea and L. microphylla are efficient in the control of S. frugiperda, but are not selective to the predator E. Annulipes.
A lagarta-do-cartucho (Spodoptera frugiperda) é a principal espécie que causa danos à cultura do milho no Brasil. Na perspectiva de estudar alternativas de controle desta praga que preservem os inimigos naturais, o objetivo desta pesquisa foi avaliar a eficiência inseticida dos óleos essenciais de Vanillosmopsis arborea e Lippia microphylla sobre S. frugiperda e verificar a seletividade ao predador Euborellia annulipes. Os bioensaios foram realizados no Laboratório de Entomologia Agropecuária da Universidade Federal da Paraíba, utilizando insetos, de 3º instar de S. frugiperda e E. annulipes, oriundos de criação massal no próprio laboratório. As diluições dos óleos foram realizadas em Tween® 80 nas concentrações de 0, 100, 150 e 200 mg mL-1. 1,0 µL de cada diluição foi aplicado na região protorácica dos insetos. A mortalidade de S. frugiperda foi verificada pelo contato tópico do óleo de V. arborea com LC10 = 74,3 mg mL-1 e LC50 = 172,86 mg mL-1, para L. microphyla, LC10 = 51,26 mg mL-1 e LC50 = 104,52 mg mL-1. As concentrações letais observadas para E. annulipes foram V. arborea LC10 = 71,3 mg mL-1 e LC50 = 160,2 mg mL-1. Enquanto L. microphyla, foram LC10 = 50,3 mg mL-1 e LC50 = 134,67 mg mL-1. Os óleos essenciais de V. arborea e L. microphylla são eficientes no controle de S. frugiperda, mas não são seletivos ao predador E. Annulipes.
Asunto(s)
Animales , Aceites , Control de Plagas , Spodoptera , Entomología , InsecticidasRESUMEN
Abstract The antioxidant activity of Tetragonisca angustula honey (TAH) and its ethanolic extract (TAEE) were investigated. The total levels of phenolic (TPC) and flavonoids (TFC) were also evaluated. The results for TPC were 19.91 ± 0.38 and 29.37 ± 1.82 mg GAE g-1 and for TFC 0.20 ± 0.02 and 0.14 ± 0.01 mg QE g-1 of TAH and TAEE, respectively. Antioxidant activities were 73.29 ± 0.49% and 93.36 ± 0.27% in the DPPH assay and 71.73 ± 4.07% and 97.86 ± 0.35% in ABTS+ for TAH and TAEE, respectively. The total reducing activity was determined by the method of reducing power (PR) and iron ion (Fe III) and the results varied in PR from 151.7 ± 25.7 and 230.7 ± 25.2 mg GAE L-1, for TAH and TAEE respectively and for (Fe III) in EC50 0.284 in TAEE and 0.687 in TAH. Chemical analysis by HPLC-DAD of the ethanolic extract (TAEE) revealed the presence of ferulic acid as majority phenolic component in the extract. The 1H NMR analysis confirmed this structure and showed the also presence of glucose, citric acid, succinic acid, proline and hydrocarbon derivatives. In addition, the botanical origin was also investigated and showed a multifloral characteristic, having found 19 pollen types with a botanical predominance of the Anacardiaceae family, with Tapirira pollen occurring as predominant (42.6%) and Schinus as secondary (25.7%). The results showed that T. angustula honey is an interesting source of antioxidant phenolic compounds due to its floral origin and can act as a protector of human health when consumed.
Resumo A atividade antioxidante do mel de Tetragonisca angustula (TAH) e seu extrato etanólico (TAEE) foram investigados. Os níveis totais de fenólicos (TPC) e flavonóides (TFC) também foram avaliados. Os resultados para TPC foram 19,91 ± 0,38 e 29,37 ± 1,82 mg GAE g-1 e para TFC 0,20 ± 0,02 e 0,14 ± 0,01 mg QE g-1 de TAH e TAEE, respectivamente. As atividades antioxidantes foram 73,29 ± 0,49% e 93,36 ± 0,27% no ensaio DPPH e 71,73 ± 4,07% e 97,86 ± 0,35% no ABTS+ para TAH e TAEE, respectivamente. A atividade redutora total foi determinada pelo método de poder redutor (PR) e íon ferrico (Fe III) e os resultados variaram em PR de 151,7 ± 25,7 e 230,7 ± 25,2 mg GAE L-1, para TAH e TAEE respectivamente e para (Fe III) em EC50 0,284 em TAEE e 0,687 em TAH. A análise química por HPLC-DAD do extrato etanólico (TAEE) revelou a presença de ácido ferúlico como componente majoritário no extrato. A análise de RMN 1H confirmou esta estrutura e mostrou a presença de glicose, ácido cítrico, ácido succínico, prolina e derivados de hidrocarbonetos no TAEE. Além disso, a origem botânica também foi investigada e apresentou característica multifloral, tendo encontrado 19 tipos polínicos com predomínio botânico da família Anacardiaceae, sendo o pólen Tapirira predominante (42,6%) e o Schinus secundário (25,7%). Os resultados mostraram que o mel de T. angustula é uma interessante fonte de compostos fenólicos antioxidantes devido à sua origem floral e pode atuar como protetor da saúde humana quando consumido.
RESUMEN
Abstract Insects' ethology is an important factor when it is desired to carry out pest management. This knowledge makes it possible to manipulate behavioral activities, repel, or attract insects according to needs and interests. The maize weevil Sitophilus zeamais (Mots., 1855) (Coleoptera: Curculionidae), one of the main stored grain pests, has been the target of studies of behavioral changes studies through natural substances due to its resistance to different insecticidal classes. Thus, this study aimed to evaluate the effect of sublethal concentrations of neem extract and copaiba oil on the locomotor behavior of S. zeamais. The behavioral characteristic considered were walking activity, the frequency of contact of insects with the treated grain mass, and the time spent for this behavior. The walking activity of the S. zeamais increased with exposure to Neem extract and Copaiba oil. In general, the Neem extract and Copaiba oil-induced more contact with grain mass than the control, suggesting an attractive effect on the insect, however more significant for the Neem oil. The insect's behavior was altered, presenting a specific path due to Copaiba oil and Neem extract stimuli. These results indicate that Copaiba oil and Neem extract can be a potential alternative for controlling S. zeamais on stored products since changes in this pests' behavior can reduce qualitative and quantitative grain damage. Thus, the development of products based on Copaiba oil and Neem extract may be helpful for storage pest management.
Resumo A etologia dos insetos é um fator importante quando se deseja relizar manejo de pragas. Através deste conhecimento, é possível manipular atividades comportamentais, repelir, ou atrair os insetos de acordo com as necessidades e interesses. O gorgulho do milho Sitophilus zeamais (Mots., 1855) (Coleoptera: Curculionidae), uma das principais pragas de grãos armazenados tem sido alvo de estudos de alterações comportamentais através de substâncias naturais devido à sua resistência a diferentes classes de insecticidas. Assim, este estudo teve como objetivo avaliar o efeito de concentrações subletais de extrato de neem e do óleo de copaíba sobre o comportamento de movimentação de S. zeamais. As características comportamentais consideradas foram: a atividade de caminhamento, a frequência do contato dos insetos com a massa de grãos tratada, e o tempo gasto para realização destes comportamentos. A atividade de caminhamento do S. zeamais aumentou quando os insetos foram expostos ao extrato de Neem e ao óleo de copaíba. Em geral, o extrato de Neem e o óleo de Copaíba induziram mais contato com a massa de grãos do que o controle, sugerindo um efeito atrativo sobre o inseto, contudo este efeito foi mais significativo para o óleo de Neem. O comportamento do inseto foi alterado, apresentando um caminhamento específico devido aos estímulos do óleo de copaíba e do extrato de Neem. Estes resultados indicam que o óleo de copaíba e o extrato de Neem podem ser alternativas potenciais para o controle do S. zeamais em produtos armazenados, uma vez que alterações no comportamento desta praga podem reduzir os danos qualitativos e quantitativos nos grãos. Assim, o desenvolvimento de produtos baseados no óleo de copaíba e no extrato de Neem pode ser útil para o manejo de pragas de armazenamento.
RESUMEN
Abstract The antioxidant activity of Tetragonisca angustula honey (TAH) and its ethanolic extract (TAEE) were investigated. The total levels of phenolic (TPC) and flavonoids (TFC) were also evaluated. The results for TPC were 19.91 ± 0.38 and 29.37 ± 1.82 mg GAE g-1 and for TFC 0.20 ± 0.02 and 0.14 ± 0.01 mg QE g-1 of TAH and TAEE, respectively. Antioxidant activities were 73.29 ± 0.49% and 93.36 ± 0.27% in the DPPH● assay and 71.73 ± 4.07% and 97.86 ± 0.35% in ABTS●+ for TAH and TAEE, respectively. The total reducing activity was determined by the method of reducing power (PR) and iron ion (Fe III) and the results varied in PR from 151.7 ± 25.7 and 230.7 ± 25.2 mg GAE L-1, for TAH and TAEE respectively and for (Fe III) in EC50 0.284 in TAEE and 0.687 in TAH. Chemical analysis by HPLC-DAD of the ethanolic extract (TAEE) revealed the presence of ferulic acid as majority phenolic component in the extract. The 1H NMR analysis confirmed this structure and showed the also presence of glucose, citric acid, succinic acid, proline and hydrocarbon derivatives. In addition, the botanical origin was also investigated and showed a multifloral characteristic, having found 19 pollen types with a botanical predominance of the Anacardiaceae family, with Tapirira pollen occurring as predominant (42.6%) and Schinus as secondary (25.7%). The results showed that T. angustula honey is an interesting source of antioxidant phenolic compounds due to its floral origin and can act as a protector of human health when consumed.
Resumo A atividade antioxidante do mel de Tetragonisca angustula (TAH) e seu extrato etanólico (TAEE) foram investigados. Os níveis totais de fenólicos (TPC) e flavonóides (TFC) também foram avaliados. Os resultados para TPC foram 19,91 ± 0,38 e 29,37 ± 1,82 mg GAE g-1 e para TFC 0,20 ± 0,02 e 0,14 ± 0,01 mg QE g-1 de TAH e TAEE, respectivamente. As atividades antioxidantes foram 73,29 ± 0,49% e 93,36 ± 0,27% no ensaio DPPH● e 71,73 ± 4,07% e 97,86 ± 0,35% no ABTS●+ para TAH e TAEE, respectivamente. A atividade redutora total foi determinada pelo método de poder redutor (PR) e íon ferrico (Fe III) e os resultados variaram em PR de 151,7 ± 25,7 e 230,7 ± 25,2 mg GAE L-1, para TAH e TAEE respectivamente e para (Fe III) em EC50 0,284 em TAEE e 0,687 em TAH. A análise química por HPLC-DAD do extrato etanólico (TAEE) revelou a presença de ácido ferúlico como componente majoritário no extrato. A análise de RMN 1H confirmou esta estrutura e mostrou a presença de glicose, ácido cítrico, ácido succínico, prolina e derivados de hidrocarbonetos no TAEE. Além disso, a origem botânica também foi investigada e apresentou característica multifloral, tendo encontrado 19 tipos polínicos com predomínio botânico da família Anacardiaceae, sendo o pólen Tapirira predominante (42,6%) e o Schinus secundário (25,7%). Os resultados mostraram que o mel de T. angustula é uma interessante fonte de compostos fenólicos antioxidantes devido à sua origem floral e pode atuar como protetor da saúde humana quando consumido.
Asunto(s)
Humanos , Animales , Miel/análisis , Antioxidantes , Fenoles/análisis , Brasil , Ácidos CumáricosRESUMEN
Essential oils are known to exhibit diverse antimicrobial properties, showing their value as a natural resource. Our work aimed to investigate the primary mode of action of Cuban Lippia graveolens (Kunth) essential oil (EO) against Salmonella enterica subsp. enterica serovar Typhimurium (S. enterica ser. Typhimurium). We assessed cell integrity through various assays, including time-kill bacteriolysis, loss of cell material with absorption at 260 and 280 nm, total protein leakage, and transmission electron microscopy (TEM). The impact of L. graveolens EO on membrane depolarization was monitored and levels of intracellular and extracellular ATP were measured by fluorescence intensity. The minimum inhibitory and bactericidal concentrations (MIC and MBC) of L. graveolens EO were 0.4 and 0.8 mg/mL, respectively. This EO exhibited notable bactericidal effects on treated cells within 15 min without lysis or leakage of cellular material. TEM showed distinct alterations in cellular ultrastructure, including membrane shrinkage and cytoplasmic content redistribution. We also observed disruption of the membrane potential along with reduced intracellular and extracellular ATP concentrations. These findings show that L. graveolens EO induces the death of S. enterica ser. Typhimurium, important information that can be used to combat this foodborne disease-causing agent.
RESUMEN
For the management of Spodoptera frugiperda, botanical extracts have been used to reduce the environmental impacts of synthetic chemical pesticides. In the present investigation, the insecticidal activity of the acetonic and methanolic extracts of Heterotheca inuloides (Asteraceae) and of the main compound 7-hydroxy-3,4-dihydrocadalene on this pest as well as its ecotoxicological effect on Poecilia reticulata were evaluated. A greater insecticidal response was obtained from the acetonic extracts than from the methanolic extracts, with LC50 values of 730.4 ppm and 711.7 ppm for samples 1 and 2, respectively. Similarly, there was a lethal effect on 50% of the P. reticulata population at low concentrations in the acetonic extract compared to the methanolic extract. The sesquiterpene 7-hydroxy-3,4-dihydrocadalene has greater insecticidal activity by presenting an LC50 of 44.36 ppm; however, it is classified as moderately toxic for guppy fish.
RESUMEN
The Ecuadorian Amazon is home to a rich biodiversity of woody plant species. Nonetheless, their conservation remains difficult, as some areas remain poorly explored and lack georeferenced records. Therefore, the current study aims predominantly to analyze the collection patterns of timber species in the Amazon lowlands of Ecuador and to evaluate the conservation coverage of these species in protected areas. Furthermore, we try to determine the conservation category of the species according to the criteria of the IUCN Red List. We identified that one third of the timber species in the study area was concentrated in three provinces due to historical botanical expeditions. However, a worrying 22.0% of the species had less than five records of presence, and 29.9% had less than ten records, indicating a possible underestimation of their presence. In addition, almost half of the species evaluated were unprotected, exposing them to deforestation risks and threats. To improve knowledge and conservation of forest biodiversity in the Ecuadorian Amazon, it is recommended to perform new botanical samplings in little-explored areas and digitize data in national herbaria. It is critical to implement automated assessments of the conservation status of species with insufficient data. In addition, it is suggested to use species distribution models to identify optimal areas for forest restoration initiatives. Effective communication of results and collaboration between scientists, governments, and local communities are key to the protection and sustainable management of forest biodiversity in the Amazon region.
RESUMEN
Species of the genus Kalanchoe have a long history of therapeutic use in ethnomedicine linked to their remarkable healing properties. Several species have chemical and anatomical similarities, often leading to confusion when they are used in folk medicine. This review aims to provide an overview and discussion of the reported traditional uses, botanical aspects, chemical constituents, and pharmacological potential of the Kalanchoe species. Published scientific materials were collected from the PubMed and SciFinder databases without restriction regarding the year of publication through April 2023. Ethnopharmacological knowledge suggests that these species have been used to treat infections, inflammation, injuries, and other disorders. Typically, all parts of the plant are used for medicinal purposes either as crude extract or juice. Botanical evaluation can clarify species differentiation and can enable correct identification and validation of the scientific data. Flavonoids are the most common classes of secondary metabolites identified from Kalanchoe species and can be correlated with some biological studies (antioxidant, anti-inflammatory, and antimicrobial potential). This review summarizes several topics related to the Kalanchoe genus, supporting future studies regarding other unexplored research areas. The need to conduct further studies to confirm the popular uses and biological activities of bioactive compounds is also highlighted.
Asunto(s)
Crassulaceae , Kalanchoe , Plantas Medicinales , Fitoterapia , Fitoquímicos/química , Etnofarmacología , Extractos Vegetales/químicaRESUMEN
Leukemic cells acquire complex and often multifactorial mechanisms of resistance to treatment, including various metabolic alterations. Although the use of metabolic modulators has been proposed for several decades, their use in clinical practice has not been established. Natural products, the so-called botanical drugs, are capable of regulating tumor metabolism, particularly in hematopoietic tumors, which could partly explain the biological activity attributed to them for a long time. This review addresses the most recent findings relating to metabolic reprogramming-Mainly in the glycolytic pathway and mitochondrial activity-Of leukemic cells and its role in the generation of resistance to conventional treatments, the modulation of the tumor microenvironment, and the evasion of immune response. In turn, it describes how the modulation of metabolism by plant-derived extracts can counteract resistance to chemotherapy in this tumor model and contribute to the activation of the antitumor immune system.
RESUMEN
The irrational use of synthetic pesticides in agriculture has had negative impacts on ecosystems and contributed to environmental pollution. Botanical pesticides offer a clean biotechnological alternative to meet the agricultural challenges posed by pests and arthropods. This article proposes the use of fruit structures (fruit, peel, seed, and sarcotesta) of several Magnolia species as biopesticides. The potential of extracts, essential oils, and secondary metabolites of these structures for pest control is described. From 11 Magnolia species, 277 natural compounds were obtained, 68.7% of which were terpenoids, phenolic compounds, and alkaloids. Finally, the importance of a correct management of Magnolia species to ensure their sustainable use and conservation is stressed.
Asunto(s)
Magnolia , Plaguicidas , Magnolia/química , Ecosistema , Plaguicidas/química , Control de Plagas , AgriculturaRESUMEN
The antifungal and insecticidal activities of 34 extracts from 27 plant species were evaluated against fungal phytopathogens of the genus Fusarium and Xyleborus Scolytine ambrosia beetles involved in Fusarium dieback (FD) and laurel wilt (LW) diseases. Sixteen extracts caused mycelial growth inhibition (MGI) above 23 % at 2â mg mL-1 against F. solani, those from S. nudum and M. argyrophylla exhibited the highest MGI (57 % and 49 %, respectively). Thirteen extracts displayed significant antifungal activity against F. kuroshium, those from C. nocturnum and M. argyrophylla exhibited the highest MGI (100 % and 54.9 %, respectively). Additionally, ten plants extracts caused mortality in at least one of the beetle species tested, mainly from Solanaceae species. In the most active species, 39 phenolics were identified that may have contributed to their biological effects. This study is one of the first to report the potential of plant-derived natural products against the causative agents of FD and LW.
Asunto(s)
Fusarium , Insecticidas , Persea , Animales , Insecticidas/farmacología , Antifúngicos/farmacología , Ambrosia , México , Enfermedades de las Plantas/microbiología , Bosques , Extractos Vegetales/farmacologíaRESUMEN
Brazil is one of the largest propolis producers in the world. Propolis is produced by bees from plant exudates and tissues, leading to many variations in the types of propolis. Generally, Brazilian propolis types are green, brown, and red. Despite not being the main research focus as the green and red propolis, brown propolis is the second most produced propolis type in Brazil and has tremendous economic and medicinal importance. Propolis has drawn attention with the rise in the search for healthier lifestyles, functional foods, biocosmetics, and natural products as therapeutic sources. This review covers the main chemical constituents identified in different types of Brazilian brown propolis, and their botanical sources, chemistry, and biological activities. The economic aspect of brown propolis is also presented. There are many gaps to be filled for brown propolis regarding the development of analytical methods, and quality control to allow its standardization, limiting its applicability in the food and pharmaceutical industries. Future perspectives regarding brown propolis research were discussed, especially biological activities, to support the medicinal uses of different types of brown propolis. Supplementary Information: The online version contains supplementary material available at 10.1007/s43450-023-00374-x.