Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21617, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284880

RESUMEN

The objective behind developing the nanoporous alumino-borosilicate (AlBS) was to remove strontium ion (Sr2+) from liquid waste and subsequently stabilize it. The sorption capacity of the nanoporous AlBS was assessed in relation to various experimental factors, including contact time, temperature, initial pH solution, and initial concentration of Sr ions. According to the obtained results, nanoporous AlBS shows a maximum Sr2+ sorption capacity of 163.08 mg/g. In order to achieve stable immobilization of the sorbed Sr ions, heat treatments at different temperatures were applied to the Sr-containing nanoporous AlBS. Various eluents were used in the leach tests to examine the Sr ions leaching from heat-treated materials. Only 3.43% of the Sr ions initially adsorbed in the nanoporous AlBS matrix was washed out with 1 M sodium chloride eluent, showing that heating the sample to around 1100 °C successfully trapped Sr ions in the nanoporous AlBS matrix.

2.
Materials (Basel) ; 17(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39203120

RESUMEN

Hundreds of nanometer-thick metal layers are used as electrical conductors in various technologies and research fields. The intensity of the radiation transmitted by such devices is a small fraction and is often neglected. Here, it is shown that intense terahertz time-domain spectroscopy can probe the absolute electro-optical properties of a 100 nm thick gold sample in transmission geometry without the need to apply electrical contacts or handle wires. The terahertz conductivity of the metal film agrees with that obtained from standard contact measurements of the static component within the error bars. This experimental approach can help to quantify the electrical properties of opaque and conductive materials such as the composite electrodes used in photovoltaic or electrochemical applications, and in the quality control of metal films.

3.
Microsc Microanal ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973604

RESUMEN

Atom probe tomography (APT) has been utilized to investigate the microstructure of two model borosilicate glasses designed to understand the solubility limits of phosphorous pentoxide (P2O5). This component is found in certain high-level radioactive defence wastes destined for vitrification, where phase separation can potentially lead to a number of issues relating to the processing of the glass and its long-term chemical and structural stability. The development of suitable focused ion beam (FIB)-preparation routes and APT analysis conditions were initially determined for the model glasses, before examining their detailed microstructures. In a 3.0 mol% P2O5-doped glass, both visual inspection and sensitive statistical analysis of the APT data show homogeneous microstructures, while raising the content to 4.0 mol% initiates the formation of phosphorus-enriched nanoscale precipitates. This study confirms the expected inhomogeneities and phase separation of these glasses and offers routes to characterizing these at near-atomic scale resolution using APT.

4.
Bioact Mater ; 40: 148-167, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38962659

RESUMEN

Implant-associated Staphylococcus aureus (S. aureus) osteomyelitis is a severe challenge in orthopedics. While antibiotic-loaded bone cement is a standardized therapeutic approach for S. aureus osteomyelitis, it falls short in eradicating Staphylococcus abscess communities (SACs) and bacteria within osteocyte-lacuna canalicular network (OLCN) and repairing bone defects. To address limitations, we developed a borosilicate bioactive glass (BSG) combined with ferroferric oxide (Fe3O4) magnetic scaffold to enhance antibacterial efficacy and bone repair capabilities. We conducted comprehensive assessments of the osteoinductive, immunomodulatory, antibacterial properties, and thermal response of this scaffold, with or without an alternating magnetic field (AMF). Utilizing a well-established implant-related S. aureus tibial infection rabbit model, we evaluated its antibacterial performance in vivo. RNA transcriptome sequencing demonstrated that BSG + 5%Fe3O4 enhanced the immune response to bacteria and promoted osteogenic differentiation and mineralization of MSCs. Notably, BSG + 5%Fe3O4 upregulated gene expression of NOD-like receptor and TNF pathway in MSCs, alongside increased the expression of osteogenic factors (RUNX2, ALP and OCN) in vitro. Flow cytometry on macrophage exhibited a polarization effect towards M2, accompanied by upregulation of anti-inflammatory genes (TGF-ß1 and IL-1Ra) and downregulation of pro-inflammatory genes (IL-6 and IL-1ß) among macrophages. In vivo CT imaging revealed the absence of osteolysis and periosteal response in rabbits treated with BSG + 5%Fe3O4 + AMF at 42 days. Histological analysis indicated complete controls of SACs and bacteria within OLCN by day 42, along with new bone formation, signifying effective control of S. aureus osteomyelitis. Further investigations will focus on the in vivo biosafety and biological mechanism of this scaffold within infectious microenvironment.

5.
Sci Rep ; 14(1): 13673, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871825

RESUMEN

From the useless municipal solid waste (MSW) ashes, CeO2, Gd2O3 and CeO2 + Gd2O3 doped borosilicate glasses were organized via melting-quenching procedure. Various optical, structural, physical and radiation shielding parameters were examined towards the influence of 100 kGy of γ-radiation. UV-visible NIR spectra revealed UV peaks at 351, 348 and 370 nm corresponding to the trivalent states of Ce3+ and Gd3+ ions, while, photoluminescence (PL) spectra displayed asymmetric broad excitations of Ce3+ and Gd3+ ions due to 4f → 5d transitions, and emission intense bands at 412, 434, and 417 nm. CIE chromaticity shows that Gd3+ ions increase the luminescence of Ce3+. FTIR absorption bands revealed an overlapping between tetrahedral groups of silicate (SiO4), with trigonal (BO3) and tetrahedral (BO4) units of borate. The influence of 100 kGy obtains quite reduction in UV-visible NIR and PL peaks, large stability in FTIR and ESR spectra, and stability of thermal expansion coefficient (CTE) as well. The whole data revealed optical, structural and physical stability of glasses after irradiation besides an enhancement in microhardness owing to more structural compactness and high bonding connectivity. Radiation shielding parameters from Phy-X/PSD program showed higher values of mass (MAC) and linear attenuation coefficients (LAC), and effective atomic number (Zeff) in the order of; glass Ce+Gd > glass Ce > glass Gd. Ce + Gd doped glass revealed also the lowest half value layer (HVL) comparing to other shielding commercial concretes. The study recommends the beneficial and economical use of the useless MSW ash to produce CeO2 and/or Gd2O3 borosilicate glasses with hopeful radiation shielding features.

6.
Materials (Basel) ; 17(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38730960

RESUMEN

In this study, terbium-doped ZnO-SiO2-B2O3-Na2O glasses were fabricated with the conventional melt-quenching method. The effect of altering the concentration of the host matrix on luminescence performance was investigated in terms of different ZnO/B2O3 and ZnO/SiO2 ratios. FT-IR results indicate that bridging oxygens (Bos) were converted to non-bridging oxygens (NBOs) with increments of ZnO. Furthermore, the emission intensity and luminescence lifetime of samples were influenced by the amount of ZnO; this was proven with photoluminescence spectra results. The maximum emission intensity was observed at a 1.1 ZnO/B2O3 ratio and a 0.8 ZnO/SiO2 ratio; however, the highest luminescence lifetime was observed at a 1.1 ZnO/SiO2 ratio. The emission intensity and luminescence lifetime of glass samples were improved by heat treatment as a result of the formation of willemite and zinc oxide phases. An increase in the ZnO/SiO2 ratio facilitated the formation of willemite and zinc oxide phases; therefore, crystallinity was directly related to the luminescence behavior of glass samples.

7.
Front Chem ; 12: 1349531, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591058

RESUMEN

The immobilization of high-level nuclear waste (HLW) in glass waste matrices provides the key safety function of slowing down radionuclide emissions from an underground disposal site. This study examines the leaching behavior of two major elements, Na and Si, in HLW borosilicate glass simulated from waste of a 1000 MWe class pressurized water reactor (PWR) using response surface methodology and Box-Behnken Design. The design of the experiment was carried out considering three independent variables: the pH of the solution, the contact time, and the leaching temperature, leading to 17 leaching runs performed using the static product consistency test (PCT). The results of statistical analysis (ANOVA: analysis of variance) indicated that the effects of the individual variables and the interactions between them were statistically significant, and the relative consistency of the data further confirmed the model's applicability. Data obtained from the PCT experiments revealed that the leaching behavior of Na and Si in the evaluated waste glass exhibited similar behavior to previously researched glasses for each condition tested.

8.
Sci Rep ; 14(1): 5429, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443496

RESUMEN

The current work deals with the synthesis of a new glass series with a chemical formula of 5Al2O3-25PbO-10SiO2-(60-x) B2O3-xBaO; x was represented as 5, 10, 15, and 20 mol%. The FT-IR spectroscopy was used to present the structural modification by rising the BaO concentration within the synthesized glasses. Furthermore, the impacts of BaO substitution for B2O3 on the fabricated borosilicate glasses were investigated using the Makishima-Mackenzie model. Besides, the role of BaO in enhancing the gamma-ray shielding properties of the fabricated boro-silicate glasses was examined utilizing the Monte Carlo simulation. The mechanical properties evaluation depicts a reduction in the mechanical moduli (Young, bulk, shear, and longitudinal) by the rising of the Ba/B ratio in the fabricated glasses. Simultaneously, the micro-hardness boro-silicate glasses was reduced from 4.49 to 4.12 GPa by increasing the Ba2+/B3+ ratio from 0.58 to 3.18, respectively. In contrast, the increase in the Ba/B ratio increases the linear attenuation coefficient, where it is enhanced between 0.409 and 0.448 cm-1 by rising the Ba2+/B3+ ratio from 0.58 to 3.18, respectively. The enhancement in linear attenuation coefficient decreases the half-value thickness from 1.69 to 1.55 cm and the equivalent thickness of lead is also reduced from 3.04 to 2.78 cm, at a gamma-ray energy of 0.662 MeV. The study shows that the increase in the Ba2+/B3+ ratio enhances the radiation shielding capacity of the fabricated glasses however, it slightly degrades the mechanical properties of the fabricated glasses. Therefore, glasses with high ratios of Ba2+/B3+ have high gamma-ray shielding ability to be used in hospitals as a shielding material.

9.
Materials (Basel) ; 17(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38541551

RESUMEN

Powder injection molding is an established, cost effective and often near-net-shape mass production process for metal or ceramic parts with complex geometries. This paper deals with the extension of the powder injection molding process chain towards the usage of a commercially available borosilicate glass and the realization of glass compounds with huge densities. The whole process chain consists of the individual steps of compounding, molding, debinding, and sintering. The first part, namely, the search for a suitable feedstock composition with a very high solid load and reliable molding properties, is mandatory for the successful manufacture of a dense glass part. The most prominent feature is the binder composition and the related comprehensive rheological characterization. In this work, a binder system consisting of polyethylene glycol and polymethylmethacrylate with stearic acid as a surfactant was selected and its suitability for glass injection molding was evaluated. The influence of all feedstock components on processing and of the process steps on the final sintered part was investigated for sintered glass parts with densities around 99% of the theoretical value.

10.
Med Phys ; 50(11): 6779-6788, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37669507

RESUMEN

BACKGROUND: The feasibility of oral dark contrast media is under exploration in abdominal computed tomography (CT) applications. One of the experimental contrast media in this class is dark borosilicate contrast media (DBCM), which has a CT attenuation lower than that of intra-abdominal fat. PURPOSE: To evaluate the performances of DBCM using single- and multi-energy CT imaging on a clinical photon-counting-detector CT (PCD-CT). METHODS: Five vials, three with iodinated contrast agent (5, 10, and 20 mg/mL; Omnipaque 350) and two with DBCM (6% and 12%; Nextrast, Inc.), and one solid-water rod (neutral contrast agent) were inserted into two multi-energy CT phantoms, and scanned on a clinical PCD-CT system (NAEOTOM Alpha) at 90, 120, 140, Sn100, and Sn140 kV (Sn: tin filter) in multi-energy mode. CARE keV IQ level was 180 (CTDIvol: 3.0 and 12.0 mGy for the small and large phantoms, respectively). Low-energy threshold images were reconstructed with a quantitative kernel (Qr40, iterative reconstruction strength 2) and slice thickness/increment of 2.0/2.0 mm. Virtual monoenergetic images (VMIs) were reconstructed from 40 to 140 keV at 10 keV increments. On all images, average CT numbers for each vial/rod were measured using circular region-of-interests and averaged over eight slices. The contrast-to-noise ratio (CNR) of iodine (5 mg/mL) against DBCM was calculated and plotted against tube potential and VMI energy level, and compared to the CNR of iodine against water. Similar analyses were performed on iodine maps and VNC images derived from the multi-energy scan at 120 kV. RESULTS: With increasing kV or VMI keV, the negative HU of DBCM decreased only slightly, whereas the positive HU of iodine decreased across all contrast concentrations and phantom sizes. CT numbers for DBCM decreased from -178.5 ± 9.6 to -194.4 ± 6.3 HU (small phantom) and from -181.7 ± 15.7 to -192.1 ± 11.9 HU (large phantom) for DBCM-12% from 90 to Sn140 kV; on VMIs, the CT numbers for DBCM decreased minimally from -147.1 ± 15.7 to -185.1 ± 9.2 HU (small phantom) and -158.8 ± 28.6 to -188.9 ± 14.7 HU (large phantom) from 40 to 70 keV, but remained stable from 80 to 140 keV. The highest iodine CNR against DBCM in low-energy threshold images was seen at 90 or Sn140 kV for the small phantom, whereas all CNR values from low-energy threshold images for the large phantom were comparable. The CNR values of iodine against DBCM computed on VMIs were highest at 40 or 70 keV depending on iodine and DBCM concentrations. The CNR values of iodine against DBCM were consistently higher than iodine to water (up to 460% higher dependent on energy level). Further, the CNR of iodine compared to DBCM is less affected by VMI energy level than the identical comparison between iodine and water: CNR values at 140 keV were reduced by 46.6% (small phantom) or 42.6% (large phantom) compared to 40 keV; CNR values for iodine compared to water were reduced by 86.3% and 83.8% for similar phantom sizes, respectively. Compared to 70 keV VMI, the iodine CNR against DBCM was 13%-79% lower on iodine maps and VNC. CONCLUSIONS: When evaluated at different tube potentials and VMI energy levels using a clinical PCD-CT system, DBCM showed consistently higher CNR compared to iodine versus water (a neutral contrast).


Asunto(s)
Medios de Contraste , Yodo , Tomografía Computarizada por Rayos X/métodos , Yohexol , Fantasmas de Imagen , Agua , Relación Señal-Ruido
11.
J Mech Behav Biomed Mater ; 147: 106150, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37776761

RESUMEN

The research article aims to investigate the mechanical and tribological characteristics of bioactive glass specimens comprising 31B2O3-20SiO2-24.5Na2O-(24.5-x) CaO and xZrO2 (mol%). This glass system was partially derived from bio-waste, with varying concentrations of Zirconia (ZrO2) represented x (x = 0, 1, 3, and 5). The specimens were fabricated using the traditional melt-quench method. Mechanical studies like hardness and compressive strength were measured using Vickers hardness tester and universal tensile machine respectively, while a pin-on-disk tribometer was used to analyze the tribological characteristics. All the specimens were soaked in SBF for a week to assess in-vitro bioactivity. The research findings indicate that Zirconia inclusion resulted in a significant reduction in the intensity of hydroxyapatite peaks of FTIR and XRD spectra, suggesting a decrease in bioactivity. However, it concurrently resulted in increased glass hardness, with the highest value (∼7.55 GPa) observed in the BSG-5 glass sample. Similarly, compressive strength results demonstrated maximum strength in BSG-5 glass specimen, with a value of approximately ∼132 MPa. Moreover, the tribological properties of the glass system were enhanced, evident from the reduced coefficient of friction and specific wear rate. Notably, the BSG-5 glass specimen exhibited the least wear coefficient of 0.018 mm3/N-m at a track radius of 40 mm and a load of 15N. These findings were further supported by SEM images of the worn-out ZrO2-Doped Borosilicate Glass surface. Overall, the results suggest that the addition of Zirconia to borosilicate glass holds promise for improving its mechanical and tribological characteristics. However, this enhancement comes at the expense of its bioactivity. Consequently, the modified glass system presents a cost effective viable option for various applications, particularly in load-bearing and dental applications.

12.
J Funct Biomater ; 14(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37504859

RESUMEN

Derived Hench bioactive glass (BaG) containing boron (B) is explored in this work as it plays an important role in bone development and regeneration. B was also found to enhance BaG dissociation. However, it is only possible to incorporate a limited amount of B. To increase the amount of B in BaG, bioactive borosilicate glasses (BaG-Bx) were fabricated based on the use of the solution-gelation process (sol-gel). In this work, a high B content (20 wt.%) in BaG, respecting the conditions of bioactivity and biodegradability required by Hench, was achieved for the first time. The capability of BaG-Bx to form an apatite phase was assessed in vitro by immersion in simulated body fluid (SBF). Then, the chemical structure and the morphological changes in the fabricated BaG-Bx (x = 0, 5, 10 and 20) were studied. The formation of hydroxyapatite (HAp) layer was observed with X-ray diffraction (XRD) and infrared (IR) spectroscopy. The presence of HAp layer was confirmed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Enhanced bioactivity and chemical stability of BaG-Bx were evaluated with an ion exchange study based on Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and energy dispersive spectroscopy (EDS). Results indicate that by increasing the concentration of B in BaG-Bx, the crystallization rate and the quality of the newly formed HAp layer on BaG-Bx surfaces can be improved. The presence of B also leads to enhanced degradation of BaGs in SBF. Accordingly, BAG-Bx can be used for bone regeneration, especially in children, because of its faster degradation as compared to B-free glass.

13.
Luminescence ; 38(10): 1768-1779, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37488972

RESUMEN

Different concentrations of Sm2 O3 -doped lead borosilicate glass were synthesized using a melt-quenching method and their characteristics were analyzed using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy absorption, emission, and decay curves. From the XRD patterns, the noncrystalline nature of titled glass was confirmed. The structural groups that existed in the host glass were observed from FTIR spectra. The Judd-Ofelt (JO) intensity parameters and oscillator strengths were derived from the absorption spectra and compared with various reported systems. The excitation luminescence levels of the Sm3+ ion radiative properties were further computed using the JO intensity parameters. Effective bandwidth, emission cross-sections (σe ), and several lasing properties were assessed from emission spectra and compared with other reported glass systems. The decay curves of the 4 G5/2 level of Sm3+ ion were also been measured and examined. Additionally, the colour coordinates of the Commission International de I'Éclairage chromaticity were assessed. The titled glass were suitable for visible reddish orange luminescence devices based on all obtained parameters.

14.
Biomed Mater ; 18(5)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37478872

RESUMEN

Due to the improvement and innovation of theoretical methods and the increasing enhancement of high performance computing, computer simulations provide a new method and strategy for optimizing complex composition of novel bioactive glass. In this work, molecular dynamics simulations were used to analyze the effect of B/Si molar ratio on the structure of borosilicate bioactive glass (BBG) and to investigate the effect of structural alterations on its ions release and biological effects. Structural descriptor a theoretical structural descriptor that estimates the overall strength of the glass network (Fnet) was calculated from the simulated data, and the linear relationships ofFnetwith B and Mg releasing rate in deionized water and simulated body fluid were built.In vitromineralization experiments showed that all three BBGs could generate hydroxyapatite and the release of some network modifier ions such as Mg would be regulated by the B/Si ratio.In vitrocellular experiments revealed that the BBG sample with a composition of 1.25B (6Na2O-8K2O-8MgO-22CaO-22.5B2O3-2P2O5-31.5SiO2) promoted the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells, and significantly enhanced the expression of osteogenesis-related genes such as osteopontin, which might be related to the release of Mg at an early stage.

15.
Materials (Basel) ; 16(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37444941

RESUMEN

This paper investigates the wettability of Kovar alloys with high-borosilicate glass and microscopically analyses the mechanism of wettability and diffusion between Kovar and borosilicate glass. First, Kovar was oxidised at 800 °C for 5, 15, 25, 35, and 60 min to observe the oxide morphology of the Kovar surface layer and to analyse the composition of the oxide layer. To investigate the wetting pattern formations of Kovar and high-borosilicate glass under different wetting temperatures, times, and preoxidation conditions, Kovar and high-borosilicate glass obtained from different oxidation treatments were held at 1060 °C for 20 min for wetting experiments, and the glass-metal wetting interface morphology and elemental distribution were observed using SEM and EDS. The elemental diffusion at the wetting interface between the borosilicate glass and the Kovar with different preoxidation and at the glass spreading boundary was investigated. The longitudinal diffusion of the liquid glass in the metal oxide layer formed a new tight chemical bond of Fe2SiO4, and the lateral diffusion of the liquid glass in the Kovar surface layer formed a black halo.

16.
Materials (Basel) ; 16(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37512290

RESUMEN

Glass containing chromium is a promising material for use in various modern fields of application (laser technology, optoelectronic devices, and luminescent resources). Chromium oxides are well-known nucleating agents that can cause crystallization. One of the most commonly observed crystalline phases in silicate glasses is cristobalite, which lowers their mechanical strength, leading to the destruction of the material. The objective of this investigation was to study in detail the crystallization of cristobalite in sodium borosilicate glass in the presence of 2 mol% Cr2O3, depending on the thermal history of the glass. The glass was studied using XRD, SEM, EPR, FTIR-spectroscopy, XPS, and solid-state NMR. Eskolaite, α-Cr2O3, which had crystallized in this glass, stimulated the bulk crystallization of cristobalite at 550 °C after isothermally treating it for 72 h, due to the phase-separated structure of the glass with its interpenetrating phase morphology. Polytypism, resulting in the incorporation of alkalis into the cristobalite structure, was observed. Cr2O3 causes the catalytic crystallization of cristobalite at an extremely low temperature, which is at lower concentrations and temperatures than in glass containing Fe2O3 with a similar composition. The crystal growth rate and the incubation time for the crystallization of cristobalite were roughly estimated.

17.
Materials (Basel) ; 16(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37512338

RESUMEN

Low-alkali borosilicate glass was used as the immobilization substrate, and Ce was used to replicate the trivalent and tetravalent actinides, in order to create simulated waste glass through melt heat treatment. The valence of Ce and solubility of CeO2 in waste glass were studied as well as its network structure and thermal and chemical stability. The solubility of Ce in waste glass was examined by XRD and SEM. The network structure was examined by Raman spectroscopy. The valence of Ce was determined by X-ray photoelectron spectroscopy. Thermal analysis and product consistency (PCT) were employed to determine the thermal and chemical stability of waste glasses. The results show that the solubility of cerium in low-alkali borosilicate glasses is at least 25.wt.% and precipitates a spherical CeO2 crystalline phase when it exceeds the solid solution limit; Ce is immobilized in the glass by entering the interstices of the glass network. Depolymerization and the transition from [BO3] to [BO4] occurs when CeO2 doping levels rise. About 60 percent of Ce4+ is converted to Ce3+, and the thermal stability of glass rises then falls with the increase of CeO2. All samples exhibit strong leaching resistance, with the average mass loss of Ce at 28 days being less than 10-4 gm-2d-1.

18.
J Mech Behav Biomed Mater ; 144: 105976, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356210

RESUMEN

Strontium borosilicate bioactive glass (SrBG) and calcium aluminate cement (CA) composites have been synthesized. The primary goal of this work is to evaluate how SrBG affects the bioactivity and physico-mechanical characteristics of CA. To fulfill this aim, SrBG was prepared by melt-quenching method and utilized as a substitute for CA by 5, 10, 15, and 20 wt%. To estimate the biological behavior of the prepared specimens, hydrᴏxyapatite layer (HA) establishment on the surface of cement paste was followed; after their immersion in a solution resembles human blood plasma (simulated body fluid solution (SBF)) at a temperature of about37 ± 0.5 °C for 4 weeks. The variations of pH, Ca and P ions concentrations in the SBF solution after soaking were determined. Compressive strength, apparent porosity, and bulk density were also measured. Via Fourier transform IR spectroscopy and X-ray diffraction analyses, the main components had been analyzed. Using scanning electron microscope (SEM) attached to energy dispersive spectroscopy, morphology of the samples was investigated. Additionally, the antimicrobial property was also assessed. The results proved that the hydrᴏxyapatite layer (HA) was developed on the surface of the prepared samples after soaking in the biological solution (SBF). It was also found that increasing SrBG percent in synthesized samples promotes the physico-mechanical characteristics and also the bioactivity performance of CA cement. Finally, these materials also showed good inhibition behavior towards bacterial biᴏfilms, against S. aureus and E. coli. after 48h. This makes these materials excellent candidates for preventing growth of bacteria after their implantation in teeth or bone.


Asunto(s)
Antiinfecciosos , Estroncio , Humanos , Estroncio/química , Escherichia coli , Staphylococcus aureus , Cementos para Huesos/química , Antiinfecciosos/farmacología , Vidrio/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química
19.
Heliyon ; 9(6): e16333, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292333

RESUMEN

Glass is a food contact material that has been used for a long time in food packaging because it is chemically durable and stable. However, when used for a long time in an aqueous solution or under certain conditions in which alteration may occur, solid flakes may be formed. The phenomenon could be observed when the process of boiling water in a glass kettle is repeated. Transparent and shiny needle-shaped glass fragments appear floating in the water, which may cause complaints from consumers. The purpose of this study is to investigate the conditions leading to the formation of flakes and to identify the components of the suspended flakes in glass container. In this study we investigated the formation of flakes at different temperatures (70-100 °C), initial pH values (3-11) and varying the solution composition (with Na+, K+, Ca2+, Mg2+ concentrations from 0.2 to 40 mg/L). Two types of glass materials, soda-lime-silica glass and borosilicate glass (heat-resistance glass) were examined. Results show that flakes were observed under the following conditions: 24 h at more than 90 °C, pH 8, and 20 mg/L Ca2+ for soda-lime-silica glass and more than 100 °C, pH 11 for borosilicate glass. The component of flakes was identified as a mixture of hydrates of magnesium, calcium, and aluminum silicate analyzed by X-ray fluorescence spectroscopy, inductively coupled plasma-optical emission spectroscopy, and X-ray diffraction.

20.
ACS Appl Mater Interfaces ; 15(18): 22219-22230, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37115516

RESUMEN

All inorganic perovskite (CsPbX3, X = Cl, Br, I) quantum dot (QD) glass samples are considered the next generation of lighting materials for their excellent luminescence properties and stability, but crystallization conditions are difficult to control, which often leads to the inhomogeneous crystallinity of QDs. Here, we provided evidence that the presence of sodium fluoride induced self-crystallization of CsPbBr3 QDs during routine glass formation without the need for additional heat treatment. We showed that NaF simultaneously affected the network structure of glass and promoted the formation of CsPbBr3 QDs, that is, Na+ ions entered the glass network skeleton, partially interrupting the network structure, while the strong electronegativity of F- ions attracted Cs+ and Pb2+ ions into the gaps formed in the glass networks that had been loosened up by Na+ ions, which reduced the activation energy of crystallization processes. Our results showed that NaF-induced CsPbBr3 QDs glass had excellent thermal stability, high photoluminescence quantum efficiency (49%), and luminescent stability under high-power laser irradiation. Finally, this work also demonstrated the general applicability of this method in the making of a series of CsPbX3 (X = Cl, Br, I) QD glass samples by NaF-induced self-crystallization, which drastically expanded the color gamut to a range of full spectrum for luminescence and laser-driven projection displays. We believe that the work presented here represents a new direction for the research and development of full-color gamut inorganic perovskite quantum dot glass samples, which could have a significant impact on the future applications of laser-driven projection displays as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA