Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
Oecologia ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230725

RESUMEN

Human disturbance compromises the ecological integrity of forests, negatively affecting associated species. Assessing the impact of forest integrity on biodiversity is complex due to the interplay of various human activities, ecological factors, and their interactions. Current large-scale indices assess forest integrity but often lack a direct connection to the biotic environment. We tested the effectiveness of the global Forest Landscape Integrity Index (FLII) in evaluating aspects of anthropogenic forest degradation on the biotic community. We analyzed the relationship between changes in the ecological integrity of Finnish forests and variations in mammal species abundance, using the number of tracks from 17 different species collected during the winter seasons between 2016 and 2020 in south-central Finland. Beyond the FLII, we analyzed forest and canopy cover to enhance the accuracy of habitat preference assessments. We found that the FLII captures the varying degrees of forest integrity, as reflected by the correlation between the abundance of winter tracks and the FLII for most mammals. Species that were positively associated with forest integrity were all native to the boreal forest, while mammals that adapt well to human-disturbed environments including two invasive species were more common in lower FLII forests. Significant differences in habitat preferences were also observed in relation to forest and canopy cover, revealing additional nuances that the FLII alone did not capture. This study demonstrates that the FLII, when combined with a comprehensive dataset and supplemented with region-specific factors, can assess species' adaptability to human-modified forests, aiding in the development of conservation strategies.

2.
Ecol Evol ; 14(8): e70077, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114162

RESUMEN

Tree regeneration shapes forest carbon dynamics by determining long-term forest composition and structure, which suggests that threats to natural regeneration may diminish the capacity of forests to replace live tree carbon transferred to the atmosphere or other pools through tree mortality. Yet, the potential implications of tree regeneration patterns for future carbon dynamics have been sparsely studied. We used forest inventory plots to investigate whether the composition of existing tree regeneration is consistent with aboveground carbon stock loss, replacement, or gain for forests across the northeastern and midwestern USA, leveraging a recently developed method to predict the likelihood of sapling recruitment from seedling abundance tallied within six seedling height classes. A comparison of carbon stock predictions from tree and seedling composition suggested that 29% of plots were poised to lose carbon based on seedling composition, 55% were poised for replacement of carbon stocks (<5 Mg ha-1 difference) and 16% were poised to gain carbon. Forests predicted to lose carbon tended to be on steeper slopes, at lower latitudes, and in rolling upland environments. Although plots predicted to gain and lose carbon had similar stand ages, carbon loss plots had greater current carbon stocks. Synthesis and applications. Our results demonstrate the utility of considering tree regeneration through the lens of carbon replacement to develop effective management strategies to secure long-term carbon storage and resilience in the context of global change. Forests poised to lose C due to climate change and other stressors could be prioritized for regeneration strategies that enhance long-term carbon resilience and stewardship.

3.
Plant Cell Environ ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189985

RESUMEN

Understanding the dynamics of δ13C and δ18O in modern resin is crucial for interpreting (sub)fossilized resin records and resin production dynamics. We measured the δ13C and δ18O offsets between resin acids and their precursor molecules in the top-canopy twigs and breast-height stems of mature Pinus sylvestris trees. We also investigated the physiological and environmental signals imprinted in resin δ13C and δ18O at an intra-seasonal scale. Resin δ13C was c. 2‰ lower than sucrose δ13C, in both twigs and stems, likely due to the loss of 13C-enriched C-1 atoms of pyruvate during isoprene formation and kinetic isotope effects during diterpene synthesis. Resin δ18O was c. 20‰ higher than xylem water δ18O and c. 20‰ lower than δ18O of water-soluble carbohydrates, possibly caused by discrimination against 18O during O2-based diterpene oxidation and 35%-50% oxygen atom exchange with water. Resin δ13C and δ18O recorded a strong signal of soil water potential; however, their overall capacity to infer intraseasonal environmental changes was limited by their temporal, within-tree and among-tree variations. Future studies should validate the potential isotope fractionation mechanisms associated with resin synthesis and explore the use of resin δ13C and δ18O as a long-term proxy for physiological and environmental changes.

4.
Sci Total Environ ; 946: 174387, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38955275

RESUMEN

Northern temperate and boreal forests are large biomes playing crucial ecological and environmental roles, such as carbon sequestration. Despite being generally remote, these forests were exposed to anthropogenic nitrogen (N) deposition over the last two centuries and may still experience elevated N deposition as human activities expand towards high latitudes. However, the impacts of long-term high N deposition on these N-limited forest ecosystems remain unclear. For 18 years, we simulated N deposition by chronically adding ammonium nitrate at rates of 3 (LN treatment) and 10 (HN treatment) times the ambient N deposition estimated at the beginning of the experiment at a temperate sugar maple and a boreal balsam fir forest site, both located in northeastern America. LN and HN treatments corresponded respectively to addition of 26 kgN·ha-1·yr-1 and 85 kgN·ha-1·yr-1 at the temperate site and 17 kgN·ha-1·yr-1 and 57 kgN·ha-1·yr-1 at the boreal site. Between 2002 and 2018, soil solution was collected weekly during summer and concentrations of NO3-, NH4+, Ca2+ and pH were measured, totalling ~12,700-13,500 observations per variable on the study period. N treatments caused soil solution NO3-, NH4+ and Ca2+ concentrations to increase while reducing its pH. However, ion responses manifested through punctual high concentration events (predominantly on the HN plots) that were very rare and leached N quantity was extremely low at both sites. Therefore, N addition corresponding to 54 years (LN treatment) and 180 years (HN treatment) of accelerated ambient N deposition had overall small impacts on soil solution chemistry. Our results indicate an important N retention of northeastern American forests and an unexpected strong resilience of their soil solution chemistry to long-term simulated N deposition, potentially explained by the widespread N-limitation in high latitude ecosystems. This finding can help predict the future productivity of N-limited forests and improve forest management strategies in northeastern America.

5.
Plants (Basel) ; 13(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065418

RESUMEN

The impact of frequent water deficits on dominant tree species in boreal forests has received increased attention, particularly towards addressing the global climate change scenarios. However, the impacts of coupled light intensity and water deficit in the regeneration and growth of Larix gmelinii seedlings, a dominant species in China's boreal forests, are still unclear. We conducted a dual-factor controlled experiment with four light intensities (natural sunlight, 50% shading, 75% shading, and 90% shading) and three soil water conditions (80%, 60%, and 40% soil saturated water content). The results showed that the coupling of light and water has a significant effect on the growth and development of Larix gmelinii seedlings. In 40% of the saturated soil moisture content, net photosynthetic rate, transpiration rate, chlorophyll a, and total phenol-leaf were significantly lower than the same light conditions under 80% soil saturated water content. Under the coupling treatment of 60% soil saturated water content and 50% shading treatment, the plant height increment, net photosynthetic rate, stomatal conductance, transpiration rate, chlorophyll a, and phenolic compound content were significantly higher than those of other coupling treatments; however, more than 75% shading inhibited photosynthetic parameters, chlorophyll a, total flavonoid-leaf, and total flavonoid-branch. Our results have important implications for forest management practices; they provide a scientific reference for the early growth of Larix gmelinii seedlings under the coupling of light and water and promote the survival and growth of seedlings.

6.
Glob Chang Biol ; 30(7): e17424, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39044435

RESUMEN

Extreme droughts are globally increasing in frequency and severity. Most research on drought in forests focuses on the response of trees, while less is known about the impacts of drought on forest understory species and how these effects are moderated by the local environment. We assessed the impacts of a 45-day experimental summer drought on the performance of six boreal forest understory plants, using a transplant experiment with rainout shelters replicated across 25 sites. We recorded growth, vitality and reproduction immediately, 2 months, and 1 year after the simulated drought, and examined how differences in ambient soil moisture and canopy cover among sites influenced the effects of drought on the performance of each species. Drought negatively affected the growth and/or vitality of all species, but the effects were stronger and more persistent in the bryophytes than in the vascular plants. The two species associated with older forests, the moss Hylocomiastrum umbratum and the orchid Goodyera repens, suffered larger effects than the more generalist species included in the experiment. The drought reduced reproductive output in the moss Hylocomium splendens in the next growing season, but increased reproduction in the graminoid Luzula pilosa. Higher ambient soil moisture reduced some negative effects of drought on vascular plants. Both denser canopy cover and higher soil moisture alleviated drought effects on bryophytes, likely through alleviating cellular damage. Our experiment shows that boreal understory species can be adversely affected by drought and that effects might be stronger for bryophytes and species associated with older forests. Our results indicate that the effects of drought can vary over small spatial scales and that forest landscapes can be actively managed to alleviate drought effects on boreal forest biodiversity. For example, by managing the tree canopy and protecting hydrological networks.


Asunto(s)
Sequías , Bosques , Estaciones del Año , Suelo , Suelo/química , Agua/análisis , Taiga , Reproducción , Árboles/crecimiento & desarrollo
7.
Infect Dis Rep ; 16(4): 543-560, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39051241

RESUMEN

Parasitic diseases, such as malaria, are an immense burden to many low- and middle-income countries. In 2022, 249 million cases and 608,000 deaths were reported by the World Health Organization for malaria alone. Climate change, conflict, humanitarian crises, resource constraints and diverse biological challenges threaten progress in the elimination of malaria. Undeniably, the lack of a commercialized vaccine and the spread of drug-resistant parasites beg the need for novel approaches to treat this infectious disease. Most approaches for the development of antimalarials to date take inspiration from tropical or sub-tropical environments; however, it is necessary to expand our search. In this review, we highlight the origin of antimalarial treatments and propose new insights in the search for developing novel antiparasitic treatments. Plants and microorganisms living in harsh and cold environments, such as those found in the largely unexploited Northern Canadian boreal forest, often demonstrate interesting properties that are not found in other environments. Most prominently, the essential oil of Rhododendron tomentosum spp. Subarcticum from Nunavik and mortiamides isolated from Mortierella species found in Nunavut have shown promising activity against Plasmodium falciparum.

8.
Ecol Appl ; 34(6): e3011, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39030784

RESUMEN

Natural disturbance-based management (NDBM) is hypothesized to maintain managed forest ecosystem integrity by reducing differences between natural and managed forests. The effectiveness of this approach often entails local comparisons of species composition or diversity for a variety of biota from managed and unmanaged forests. Understory vegetation is regularly the focus of such comparison because of its importance in nutrient cycling, forest regeneration, and for wildlife. However, larger scale comparisons between regions with distinct species assemblages may require a trait-based approach to better understand understory responses to disturbance. We compared the long-term effects of retention harvesting on understory vegetation in two large experimental study sites located in eastern and western regions of the Canadian boreal forest. These sites included the Sylviculture en Aménagement Forestier Ecosystémique (SAFE) experiment and the Ecosystem Management Emulating Natural Disturbance (EMEND) experiment, located in the eastern and western regions of Canada, respectively. EMEND and SAFE share common boreal understory species but have distinct tree communities, soils, and climate. Both experiments were designed to evaluate how increasing tree retention after harvest affects biodiversity. Here, we examined taxonomic richness, functional diversity, and functional composition (using community trait mean values) of understory plant communities, and also examine intraspecific trait variability (ITV) for five species common and abundant in both experiments. We observed the limited impacts of retention level on richness, functional diversity, and functional composition of understory plants 20 years postharvest. However, ITV of leaf morphological traits varied between retention levels within each experiment, depending on the species identity. Common species had different functional responses to retention level, showing species-specific reactions to environmental variation. Our result suggests that understory plant communities in the boreal forest achieve resilience to disturbance both in terms of interspecific and intraspecific functional trait diversity. Such diversity may be key to maintaining understory biodiversity in the face of future disturbances and environmental change. Our results reveal the significance of ITV in plant communities for understanding responses to forest harvesting and the importance of choosing appropriate traits when studying species responses to the environment.


Asunto(s)
Biodiversidad , Canadá , Agricultura Forestal/métodos , Conservación de los Recursos Naturales/métodos , Árboles/fisiología , Plantas/clasificación
9.
Environ Sci Technol ; 58(24): 10611-10622, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38836563

RESUMEN

Net nitrogen mineralization (Nmin) and nitrification regulate soil N availability and loss after severe wildfires in boreal forests experiencing slow vegetation recovery. Yet, how microorganisms respond to postfire phosphorus (P) enrichment to alter soil N transformations remains unclear in N-limited boreal forests. Here, we investigated postfire N-P interactions using an intensive regional-scale sampling of 17 boreal forests in the Greater Khingan Mountains (Inner Mongolia-China), a laboratory P-addition incubation, and a continental-scale meta-analysis. We found that postfire soils had an increased risk of N loss by accelerated Nmin and nitrification along with low plant N demand, especially during the early vegetation recovery period. The postfire N/P imbalance created by P enrichment acts as a "N retention" strategy by inhibiting Nmin but not nitrification in boreal forests. This strategy is attributed to enhanced microbial N-use efficiency and N immobilization. Importantly, our meta-analysis found that there was a greater risk of N loss in boreal forest soils after fires than in other climatic zones, which was consistent with our results from the 17 soils in the Greater Khingan Mountains. These findings demonstrate that postfire N-P interactions play an essential role in mitigating N limitation and maintaining nutrient balance in boreal forests.


Asunto(s)
Bosques , Nitrógeno , Fósforo , Suelo , Suelo/química , Nitrificación , Taiga , China , Incendios
10.
Ecol Appl ; 34(5): e2983, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38840517

RESUMEN

Understanding the factors influencing species range limits is increasingly crucial in anticipating migrations due to human-caused climate change. In the boreal biome, ongoing climate change and the associated increases in the rate, size, and severity of disturbances may alter the distributions of boreal tree species. Notably, Interior Alaska lacks native pine, a biogeographical anomaly that carries implications for ecosystem structure and function. The current range of lodgepole pine (Pinus contorta var. latifolia) in the adjacent Yukon Territory may expand into Interior Alaska, particularly with human assistance. Evaluating the potential for pine expansion in Alaska requires testing constraints on range limits such as dispersal limitations, environmental tolerance limits, and positive or negative biotic interactions. In this study, we used field experiments with pine seeds and transplanted seedlings, complemented by model simulations, to assess the abiotic and biotic factors influencing lodgepole pine seedling establishment and growth after fire in Interior Alaska. We found that pine could successfully recruit, survive, grow, and reproduce across our broadly distributed network of experimental sites. Our results show that both mammalian herbivory and competition from native tree species are unlikely to constrain pine growth and that environmental conditions commonly found in Interior Alaska fall well within the tolerance limits for pine. If dispersal constraints are released, lodgepole pine could have a geographically expansive range in Alaska, and once established, its growth is sufficient to support pine-dominated stands. Given the impacts of lodgepole pine on ecosystem processes such as increases in timber production, carbon sequestration, landscape flammability, and reduced forage quality, natural or human-assisted migration of this species is likely to substantially alter responses of Alaskan forest ecosystems to climate change.


Asunto(s)
Pinus , Pinus/fisiología , Alaska , Cambio Climático , Modelos Biológicos , Plantones , Demografía , Animales , Ecosistema
11.
Glob Chang Biol ; 30(6): e17363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864471

RESUMEN

Recently burned boreal forests have lower aboveground fuel loads, generating a negative feedback to subsequent wildfires. Despite this feedback, short-interval reburns (≤20 years between fires) are possible under extreme weather conditions. Reburns have consequences for ecosystem recovery, leading to enduring vegetation change. In this study, we characterize the strength of the fire-fuel feedback in recently burned Canadian boreal forests and the weather conditions that overwhelm resistance to fire spread in recently burned areas. We used a dataset of daily fire spread for thousands of large boreal fires, interpolated from remotely sensed thermal anomalies to which we associated local weather from ERA5-Land for each day of a fire's duration. We classified days with >3 ha of fire growth as spread days and defined burned pixels overlapping a fire perimeter ≤20 years old as short-interval reburns. Results of a logistic regression showed that the odds of fire spread in recently burned areas were ~50% lower than in long-interval fires; however, all Canadian boreal ecozones experienced short-interval reburning (1981-2021), with over 100,000 ha reburning annually. As fire weather conditions intensify, the resistance to fire spread declines, allowing fire to spread in recently burned areas. The weather associated with short-interval fire spread days was more extreme than the conditions during long-interval spread, but overall differences were modest (e.g. relative humidity 2.6% lower). The frequency of fire weather conducive to short-interval fire spread has significantly increased in the western boreal forest due to climate warming and drying (1981-2021). Our results suggest an ongoing degradation of fire-fuel feedbacks, which is likely to continue with climatic warming and drying.


Asunto(s)
Bosques , Tiempo (Meteorología) , Incendios Forestales , Incendios Forestales/prevención & control , Incendios Forestales/estadística & datos numéricos , Cambio Climático , Calentamiento Global
12.
Sci Total Environ ; 930: 172666, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38653415

RESUMEN

The net effect of forest disturbances, such as fires and harvesting, on soil greenhouse gas fluxes is determined by their impacts on both biological and physical factors, as well as the temporal dynamics of these effects post-disturbance. Although harvesting and fire may have distinct effects on soil carbon (C) dynamics, the temporal patterns in soil CO2 and CH4 fluxes and the potential differences between types of disturbances, remain poorly characterized in boreal forests. In this study, we measured soil CO2 and CH4 fluxes using a off-axis integrated cavity output spectroscopy system in snow-free seasons over two years in post-harvest and post-fire chronosequence sites within a mixedwood boreal forest in northwestern Ontario, Canada. Soil CO2 efflux showed a post-disturbance peak, with differing dynamics depending on the disturbance type: post-harvest stands exhibited a nearly tenfold increase (from ∼1 to ∼11 µmol CO2.m-2.s-1) from 1 to 9-10 years post-disturbance, followed by a steep decline; post-fire stands showed a more gradual increase, peaking at ∼6-7.2 µmol CO2.m-2.s-1 after ∼12-15 years. The youngest post-harvest stands were net sources of CH4,whereas post-fire stands were never net CH4 sources. In both disturbance types, the strength of the CH4 sink increased with stand age, approaching ∼2.4 nmol.m-2.s-1 by 15 years post-disturbance. Volumetric water content, bulk density, litter depth, and pH were significant predictors of CO2 fluxes; for CH4 fluxes, litter depth, pH, and the interaction of VWC and soil temperature were significant predictors in both disturbance types, with EC also showing a relationship in post-harvest stands. Our findings indicate that while soil CH4 oxidation rapidly recovers following disturbance, both post-harvest and post-fire stands show a multi-decade release of soil CO2 that is too large to be offset by C gains over this period.

13.
Ecol Appl ; 34(3): e2958, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38425036

RESUMEN

The boreal forest is one of the world's largest terrestrial biome and plays crucial roles in global biogeochemical cycles, such as carbon (C) sequestration in vegetation and soil. However, the impacts of decades of N deposition on N-limited ecosystems, like the eastern Canadian boreal forest, remain unclear. For 13 years, N deposition was simulated by periodically adding ammonium nitrate on soils of two boreal coniferous forests (i.e., balsam fir and black spruce) of eastern Canada, at low (LN) and high (HN) rates, corresponding to 3 and 10 times the ambient N deposition, respectively. We show that more than a decade of N addition had no strong effects on mineral soil C, N, P, and cation concentrations and on foliar total Ca, K, Mg, and Mn concentrations. In organic soil, C stock was not affected by N addition while N stock increased, and exchangeable Ca2+ and Mg2+ decreased at the balsam fir site under HN treatment. At both sites, LN treatment had nearly no impact on foliage and soil chemistry but foliar N and N:P significantly increased under HN treatment, potentially leading to foliar nutrient imbalance. Overall, our work indicates that, in the eastern Canadian boreal forest, soil and foliar nutrient concentrations and stocks are resilient to increasing N deposition potentially because, in the context of N limitation, extra N would be rapidly immobilized by soil micro-organisms and vegetation. These findings could improve modeling future boreal forest soil C stocks and biomass growth and could help in planning forest management strategies in eastern Canada.


Asunto(s)
Nitrógeno , Resiliencia Psicológica , Nitrógeno/análisis , Ecosistema , Taiga , Suelo/química , Canadá , Bosques , Carbono/análisis
14.
Sci Total Environ ; 918: 170741, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325494

RESUMEN

Anthropogenic nitrogen (N) deposition and fertilization in boreal forests frequently reduces decomposition and soil respiration and enhances C storage in the topsoil. This enhancement of the C sink can be as strong as the aboveground biomass response to N additions and has implications for the global C cycle, but the mechanisms remain elusive. We hypothesized that this effect would be associated with a shift in the microbial community and its activity, and particularly by fungal taxa reported to be capable of lignin degradation and organic N acquisition. We sampled the organic layer below the intact litter of a Norway spruce (Picea abies (L.) Karst) forest in northern Sweden after 20 years of annual N additions at low (12.5 kg N ha-1 yr-1) and high (50 kg N ha-1 yr-1) rates. We measured microbial biomass using phospholipid fatty-acid analysis (PLFA) and ergosterol measurements and used ITS metagenomics to profile the fungal community of soil and fine-roots. We probed the metabolic activity of the soil community by measuring the activity of extracellular enzymes and evaluated its relationships with the most N responsive soil fungal species. Nitrogen addition decreased the abundance of fungal PLFA markers and changed the fungal community in humus and fine-roots. Specifically, the humus community changed in part due to a shift from Oidiodendron pilicola, Cenococcum geophilum, and Cortinarius caperatus to Tylospora fibrillosa and Russula griseascens. These microbial community changes were associated with decreased activity of Mn-peroxidase and peptidase, and an increase in the activity of C acquiring enzymes. Our results show that the rapid accumulation of C in the humus layer frequently observed in areas with high N deposition is consistent with a shift in microbial metabolism, where decomposition associated with organic N acquisition is downregulated when inorganic N forms are readily available.


Asunto(s)
Microbiota , Nitrógeno , Nitrógeno/análisis , Suelo , Carbono , Bosques , Microbiología del Suelo
15.
Curr Biol ; 34(5): 1148-1156.e7, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38367618

RESUMEN

Understanding how symbiotic associations differ across environmental gradients is key to predicting the fate of symbioses as environments change, and it is vital for detecting global reservoirs of symbiont biodiversity in a changing world.1,2,3 However, sampling of symbiotic partners at the full-biome scale is difficult and rare. As Earth's largest terrestrial biome, boreal forests influence carbon dynamics and climate regulation at a planetary scale. Plants and lichens in this biome host the highest known phylogenetic diversity of fungal endophytes, which occur within healthy photosynthetic tissues and can influence hosts' resilience to stress.4,5 We examined how communities of endophytes are structured across the climate gradient of the boreal biome, focusing on the dominant plant and lichen species occurring across the entire south-to-north span of the boreal zone in eastern North America. Although often invoked for understanding the distribution of biodiversity, neither a latitudinal gradient nor mid-domain effect5,6,7 can explain variation in endophyte diversity at this trans-biome scale. Instead, analyses considering shifts in forest characteristics, Picea biomass and age, and nutrients in host tissues from 46° to 58° N reveal strong and distinctive signatures of climate in defining endophyte assemblages in each host lineage. Host breadth of endophytes varies with climate factors, and biodiversity hotspots can be identified at plant-community transitions across the boreal zone at a global scale. Placed against a backdrop of global circumboreal sampling,4 our study reveals the sensitivity of endophytic fungi, their reservoirs of biodiversity, and their important symbiotic associations, to climate.


Asunto(s)
Endófitos , Líquenes , Endófitos/fisiología , Filogenia , Ecosistema , Simbiosis , Biodiversidad , Plantas/microbiología
16.
Ambio ; 53(3): 482-496, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37819443

RESUMEN

Restoration of degraded habitat is frequently used in ecological compensation. However, ecological restoration suffers from innate problems of long delivery times of features shown to be good proxies for biodiversity, e.g., large dead trees. We tested a possible way to circumvent this problem; the translocation of hard-to-come deadwood substrates from an impact area to a compensation area. Following translocation, deadwood density in the compensation area was locally equivalent to the impact area, around 20 m3 ha-1, a threshold for supporting high biodiversity of rare and red-listed species. However, deadwood composition differed between the impact and compensation area, showing a need to include more deadwood types, e.g., late decomposition deadwood, in the translocation scheme. To guide future compensation efforts, the cost for translocation at different spatial scales was calculated. We conclude that translocation of deadwood could provide a cost-efficient new tool for ecological compensation/restoration but that the method needs refinement.


Asunto(s)
Ecosistema , Árboles , Biodiversidad , Bosques
17.
Sci Total Environ ; 912: 168858, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38030001

RESUMEN

Perennially frozen soil, also known as permafrost, is important for the functioning and productivity of most of the boreal forest, the world's largest terrestrial biome. A better understanding of complex vegetation-permafrost interrelationships is needed to predict changes in local- to large-scale carbon, nutrient, and water cycle dynamics under future global warming. Here, we analyze tree-ring width and tree-ring stable isotope (C and O) measurements of Gmelin larch (Larix gmelinii (Rupr.) Rupr.) from six permafrost sites in the northern taiga of central Siberia. Our multi-parameter approach shows that changes in tree growth were predominantly controlled by the air and topsoil temperature and moisture content of the active soil and upper permafrost layers. The observed patterns range from strong growth limitations by early summer temperatures at higher elevations to significant growth controls by precipitation at warmer and well-drained lower-elevation sites. Enhanced radial tree growth is mainly found at sites with fast thawing upper mineral soil layers, and the comparison of tree-ring isotopes over five-year periods with different amounts of summer precipitation indicates that trees can prevent drought stress by accessing water from melted snow and seasonally frozen soil. Identifying the active soil and upper permafrost layers as central water resources for boreal tree growth during dry summers demonstrates the complexity of ecosystem responses to climatic changes.


Asunto(s)
Hielos Perennes , Taiga , Ecosistema , Sequías , Suelo , Bosques
18.
Glob Chang Biol ; 30(1): e17002, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37916481

RESUMEN

The migration of trees induced by climatic warming has been observed at many alpine treelines and boreal-tundra ecotones, but the migration of temperate trees into southern boreal forest remains less well documented. We conducted a field investigation across an ecotone of temperate and boreal forests in northern Greater Khingan Mountains of northeast China. Our analysis demonstrates that Mongolian oak (Quercus mongolica), an important temperate tree species, has migrated rapidly into southern boreal forest in synchrony with significant climatic warming over the past century. The average rate of migration is estimated to be 12.0 ± 1.0 km decade-1 , being slightly slower than the movement of isotherms (14.7 ± 6.4 km decade-1 ). The migration rate of Mongolian oak is the highest observed among migratory temperate trees (average rate 4.0 ± 1.0 km decade-1 ) and significantly higher than the rates of tree migration at boreal-tundra ecotones (0.9 ± 0.4 km decade-1 ) and alpine treelines (0.004 ± 0.003 km decade-1 ). Compared with the coexisting dominant boreal tree species, Dahurian larch (Larix gmelinii), temperate Mongolian oak is observed to have significantly lower capacity for light acquisition, comparable water-use efficiency but stronger capacity to utilize nutrients especially the most limiting nutrient, nitrogen. In the context of climatic warming, and in addition to a high seed dispersal capacity and potential thermal niche differences, the advantage of nutrient utilization, reflected by foliar elementomes and stable nitrogen isotope ratios, is also likely a key mechanism for Mongolian oak to coexist with Dahurian larch and facilitate its migration toward boreal forest. These findings highlight a rapid deborealization of southern Asian boreal forest in response to climatic warming.


Asunto(s)
Larix , Quercus , Taiga , Árboles/fisiología , Tundra , Nitrógeno , Larix/fisiología , Bosques
19.
Sci Total Environ ; 912: 169095, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38056671

RESUMEN

Climate change may affect the ability of hunters to harvest wildlife and, hence, threaten food security of local people. However, few studies have investigated the relative influence of environmental conditions on wildlife harvest rates. We harnessed a 24-year dataset of harvest dates for a boreal ungulate in a region where climate change is having pronounced impacts on snow depth, precipitation, and temperatures to investigate the effect of weather on harvest rates. We used generalized linear models and a model selection framework to examine the influence of weather covariates (snow depth, mean daily temperature, precipitation) and socio-economic factors (gasoline and red meat prices, employment rates, and moose [Alces americanus] harvest) on harvest rates of bison (Bison bison) in Yukon, Canada, at two temporal scales: annual and daily. At an annual scale, snow depth was the only covariate that was important in explaining bison harvest. No socioeconomic variables improved our model beyond the null. At the daily scale, snow depth and mean daily temperature influenced bison harvest rates, with a 1 SD increase resulting in a 14 % and 9 % increase in daily harvest rates, respectively. Increased snow depth facilitates ease of travel in remote, roadless areas by snowmobile to locate bison and truncates movements of bison, resulting in increased harvest rates. Decreased snow depth due to climate change will impact hunter access to boreal ungulates and food security for northern people. More broadly, our data suggests that in some socioecological systems, environmental covariates have a greater influence on wildlife harvest rates than socioeconomic factors and need to be considered in future studies to better understand and predict harvest rates.


Asunto(s)
Bison , Ciervos , Animales , Humanos , Animales Salvajes , Cambio Climático , Factores Económicos , Seguridad Alimentaria , Nieve
20.
Integr Zool ; 19(1): 27-36, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36892189

RESUMEN

Baseline studies of small rodent populations in undisturbed ecosystems are rare. We report here 50 years of monitoring and experimentation in Yukon of a dominant rodent species in the North American boreal forest, the red-backed vole Clethrionomys rutilus. These voles breed in summer, weigh 20-25 g, and reach a maximum density of 20 to 25 per ha. Their populations have shown consistent 3-4-year cycles for the last 50 years with the only change being that peak densities averaged 8/ha until 2000 and 18/ha since that year. During the last 25 years, we have measured food resources, predator numbers, and winter weather, and for 1-year social interactions, to estimate their contribution to changes in the rate of summer increase and the rate of overwinter decline. All these potential limiting factors could contribute to changes in density, and we measured their relative contributions statistically with multiple regressions. The rate of winter decline in density was related to both food supply and winter severity. The rate of summer increase was related to summer berry crops and white spruce cone production. No measure of predator numbers was related to winter or summer changes in vole abundance. There was a large signal of climate change effects in these populations. There is no density dependence in summer population growth and only a weak one in winter population declines. None of our results provide a clear understanding of what generates 3-4-year cycles in these voles, and the major missing piece may be an understanding of social interactions at high density.


Asunto(s)
Ecosistema , Taiga , Animales , El Yukón , Dinámica Poblacional , Arvicolinae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA