Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Int J Oral Implantol (Berl) ; 17(3): 297-306, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283223

RESUMEN

An advantage of treated implant surfaces is their increased degree of hydrophilicity and wettability compared with untreated, machined, smooth surfaces that are hydrophobic. The present preclinical in vivo study aimed to compare the two implant surface types, namely SLActive (Straumann, Basel, Switzerland) and nanohydroxyapatite (Hiossen, Englewood Cliffs, NJ, USA), in achieving early osseointegration. The authors hypothesised that the nanohydroxyapatite surface is comparable to SLActive for early bone-implant contact. Six male mixed foxhounds underwent mandibular premolar and first molar extraction, and the sockets healed for 42 days. The mandibles were randomised to receive implants with either SLActive (control group) or nanohydroxyapatite surfaces (test group). A total of 36 implants were placed in 6 animals, and they were sacrificed at 2 weeks (2 animals), 4 weeks (2 animals) and 6 weeks (2 animals) after implant surgery. When radiographic analysis was performed, the difference in bone level between the two groups was statistically significant at 4 weeks (P = 0.024) and 6 weeks (P = 0.008), indicating that the crestal bone level was better maintained for the test group versus the control group. The bone-implant contact was also higher for the test group at 2 (P = 0.012) and 4 weeks (P = 0.011), indicating early osseointegration. In conclusion, this study underscored the potential of implants with nanohydroxyapatite surfaces to achieve early osseointegration.


Asunto(s)
Implantes Dentales , Durapatita , Mandíbula , Oseointegración , Propiedades de Superficie , Animales , Oseointegración/efectos de los fármacos , Masculino , Durapatita/farmacología , Durapatita/química , Perros , Mandíbula/cirugía , Alveolo Dental/cirugía , Alveolo Dental/diagnóstico por imagen , Diseño de Prótesis Dental , Distribución Aleatoria , Extracción Dental , Implantación Dental Endoósea/métodos , Diente Molar/cirugía , Titanio , Humectabilidad
2.
J Oral Implantol ; 50(4): 435-445, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867376

RESUMEN

The objectives of the study group focused on the following main topics related to the performance of 1- and 2-piece ceramic implants: defining bone-implant-contact percentages and its measurement methods, evaluating the pink esthetic score as an esthetic outcome parameter after immediate implantation, recognizing the different results of ceramic implant designs as redefined by the German Association of Oral Implantology, incorporating the patient report outcome measure to include satisfaction and improvement in oral health-related quality of life, and conducting preclinical studies to address existing gaps in ceramic implants. During the Joint Congress for Ceramic Implantology (2022), the study group evaluated 17 clinical trials published between 2015 and 2021. After extensive discussions and multiple closed sessions, consensus statements and recommendations were developed, incorporating all approved modifications. A 1-piece implant design features a coronal part that is fused to the implant body or interfaces with the postabutment restoration platform, undergoing transmucosal healing. Long-term evaluations of this implant design are supported by established favorable clinical evidence. Inaccuracies in the pink esthetic score and bone-implant-contact percentages were managed by establishing control groups for preclinical studies and randomizing clinical trials. The patient-reported outcome measures were adjusted to include an individual visual analog scale, collected from each clinical study, that quantified improved oral health and quality of life. Preclinical investigations should focus on examining the spread of ceramic debris and the impact of heat generation on tissue and cellular levels during drilling. Further technical advancements should prioritize wound management and developing safe drilling protocols.


Asunto(s)
Cerámica , Estética Dental , Humanos , Implantes Dentales , Diseño de Prótesis Dental , Calidad de Vida , Consenso
3.
Drug Des Devel Ther ; 18: 2249-2256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895174

RESUMEN

Objective: Recently, a lot of research has been done around the world to popularize the osseointegration of dental implants. In this study, it was investigated the effect of local zoledronic acid application on implants with machined (MAC), resorbable blast materials (RBM), sandblasted and acid-etched (SLA) surface implants integrated in rat tibias. Methodology: A total of 60 female Wistar rats weighing between 270 and 300 g were used in the study. The rats were passing divided into six classes: controls; MAC (n = 10), RBM (n = 10), SLA (n = 10), and local zoledronic acid (LZA) applied groups; LZA-MAC (n = 10), LZA-RBM (n=10) and LZA-SLA (n = 10) and implants were surgically placement into rat tibias in general anesthesia. After a four-week experimental period, the biomechanical bone implant connection level was determined with reverse torque analysis. Results: Osseointegration levels were detected highly in SLA and RBM surface compared with the machined surfaced implants in both control and treatment groups (p < 0.05). Additionally, local application of zoledronic acid in both three groups; implants increased the biomechanic osseointegration level compared with the controls (p < 0.05). Conclusion: In this research, we observe that the local application of the zoledronic acid could increase the osseointegration, and RBM and SLA surface could be better than machined surfaced implants in terms of bone implant connection. In addition, local application of zoledronic acid may be a safer method than systemic application.


Asunto(s)
Implantes Dentales , Oseointegración , Ratas Wistar , Ácido Zoledrónico , Animales , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/administración & dosificación , Oseointegración/efectos de los fármacos , Ratas , Femenino , Propiedades de Superficie , Tibia/efectos de los fármacos , Tibia/cirugía , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/administración & dosificación
4.
Comput Biol Med ; 174: 108405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613890

RESUMEN

BACKGROUND: Uncemented femoral stem insertion into the bone is achieved by applying successive impacts on an inserter tool called "ancillary". Impact analysis has shown to be a promising technique to monitor the implant insertion and to improve its primary stability. METHOD: This study aims to provide a better understanding of the dynamic phenomena occurring between the hammer, the ancillary, the implant and the bone during femoral stem insertion, to validate the use of impact analyses for implant insertion monitoring. A dynamic 3-D finite element model of the femoral stem insertion via an impaction protocol is proposed. The influence of the trabecular bone Young's modulus (Et), the interference fit (IF), the friction coefficient at the bone-implant interface (µ) and the impact velocity (v0) on the implant insertion and on the impact force signal is evaluated. RESULTS: For all configurations, a decrease of the time difference between the two first peaks of the impact force signal is observed throughout the femoral stem insertion, up to a threshold value of 0.23 ms. The number of impacts required to reach this value depends on Et, v0 and IF and varies between 3 and 8 for the set of parameters considered herein. The bone-implant contact ratio reached after ten impacts varies between 60% and 98%, increases as a function of v0 and decreases as a function of IF, µ and Et. CONCLUSION: This study confirms the potential of an impact analyses-based method to monitor implant insertion and to retrieve bone-implant contact properties.


Asunto(s)
Fémur , Análisis de Elementos Finitos , Humanos , Fémur/fisiología , Prótesis de Cadera , Modelos Biológicos , Fenómenos Biomecánicos/fisiología , Módulo de Elasticidad
5.
Oral Dis ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501359

RESUMEN

OBJECTIVES: To investigate the effect of liraglutide on osteogenesis in human alveolar bone marrow mesenchymal stem cells (BMSCs) and the influence of liraglutide on implant-bone integration in rats with T2DM. SUBJECTS AND METHODS: Extracting BMSCs from the alveoli of diabetic patients treated with insulin. BMSCs were treated with different concentrations of liraglutide. Osteogenesis and the underlying mechanism were investigated via ALP detection, ALP staining, Alizarin Red S staining, Western blotting, and RT-PCR. Liraglutide was given to Wistar and GK rats after implantation, and new bone formation around the implants was analyzed via micro-CT. Implant-bone integration in rats was investigated via toluidine blue staining. RESULTS: Liraglutide enhanced osteogenesis in BMSCs via the BMP2/Smad/Runx2 signaling pathway. The optimal concentration of liraglutide that promoted osteogenesis was 10-8 mol/L. At concentrations higher than 10-7 mol/L, liraglutide had a negative effect on BMSCs. At a concentration of 10-8 mol/L liraglutide, BMSCs and diabetes mellitus-bone marrow stromal cells (DM-BMSCs) showed optimal osteogenesis. Liraglutide promoted implant-bone integration and new bone formation in Wistar and GK rats. CONCLUSIONS: Liraglutide not only promotes osteogenesis of BMSCs in normoglycemic individuals but also enhances osteogenesis of BMSCs in diabetic patients treated with insulin and enhances osseointegration in rats.

6.
Materials (Basel) ; 17(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276411

RESUMEN

Osseointegration is the basic condition for orthopedic implants to maintain long-term stability. In order to achieve osseointegration, a low elastic modulus is the most important performance indicator. It is difficult for traditional titanium alloys to meet this requirement. A novel ß-titanium alloy (Ti-35Nb-7Zr-5Ta)98Si2 was designed, which had excellent strength (a yield strength of 1296 MPa and a breaking strength 3263 MPa), an extremely low elastic modulus (37 GPa), and did not contain toxic elements. In previous in vitro studies, we confirmed the good biocompatibility of this alloy and similar bioactivity to Ti-6Al-4V, but no in vivo study was performed. In this study, Ti-6Al-4V and (Ti-35Nb-7Zr-5Ta)98Si2 were implanted into rabbit femurs. Imaging evaluation and histological morphology were performed, and the bonding strength and bone contact ratio of the two alloys were measured and compared. The results showed that both alloys remained in their original positions 3 months after implantation, and neither imaging nor histological observations found inflammatory reactions in the surrounding bone. The bone-implant contact ratio and bonding strength of (Ti-35Nb-7Zr-5Ta)98Si2 were significantly higher than those of Ti-6Al-4V. The results confirmed that (Ti-35Nb-7Zr-5Ta)98Si2 has a better osseointegration ability than Ti-6Al-4V and is a promising material for orthopedic implants.

7.
J Stomatol Oral Maxillofac Surg ; 125(3): 101714, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38013117

RESUMEN

Introduction The purpose of this randomized controlled canine experimental study was to evaluate peri­implant hard and soft tissue healing around implants with silver coating. Methods All mandibular premolars and molars of five male beagle dogs were extracted. 25 test and 25 control implants were randomly installed and connected with the healing abutments. After 2 and 4 month healing period, implants with soft and hard tissues were obtained for histologic and histomorphometric analysis. Results In mesio-distal sections, supracrestal tissue attachment dimensions were 4.03±0.48 mm and 4.25±0.66 mm for test and 4.34±0.6 mm and 5.21±0.72 mm for control implants at 2 and 4 month healing time. The respective crestal bone loss values were 1.10±0.69 mm and 0.74±0.67 mm for test and 1.13±0.48 mm and 1.49±0.65 mm for control implants. The differences were statistically significant only in the 4-month healing period. In buccolingual sections, supracrestal tissue attachment height at 2 and 4 month healing periods were 4.09±0.64 mm and 4.5±0.8 mm for test implants and 4.17±0.76 mm and 4.48±0.76 mm for control implants. The respective mean values for crestal bone loss were 1.31±0.6 mm and 1.02±0.58 mm for test implants, and 1.28±0.61 mm and 1.29±0.69 mm for control implants. No statistical significant differences were recorded, apart from the height of connective tissue at the 2 month healing group. No significant difference in terms of BIC between implants or healing periods was recorded. Conclusions The Ag implant coating resulted in smaller supracrestal tissue attachment dimensions and less bone loss. Within the limits of a canine study, prevention of crestal bone loss along with the effectiveness of Ag antimicrobial properties in dental implantology is demonstrated.

8.
Heliyon ; 9(6): e16451, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292286

RESUMEN

Implant stability significantly impacts accelerated osseointegration, leading to faster patient recovery. Both primary and secondary stability necessitates superior bone-implant contact influenced by the surgical tool required to prepare the final osteotomy site. Besides, excessive shearing and frictional forces generate heat causing local tissue necrosis. Hence, surgical procedure necessitates proper irrigation with water to minimize heat generation. Notably, the water irrigation system removes bone chips and osseous coagulums, which may help accelerate osseointegration and improve bone-implant contact. The inferior bone-implant contact and thermal necrosis at the osteotomy site are primarily responsible for poor osseointegration and eventual failure. Therefore, optimizing tool geometry is key to minimizing shear force, heat generation, and necrosis during final osteotomy site preparation. The present study explores modified drilling tool geometry, especially cutting edge for osteotomy site preparation. The mathematical modeling is used to find out ideal cutting-edge geometry that facilitates drilling under relatively less operational force (0.55-5.24 N) and torque (98.8-154.5 N-mm) with a significant reduction (28.78%-30.87%) in heat generation. Twenty-three conceivable designs were obtained using the mathematical model; however, only three have shown promising results in static structural FEM platforms. These drill bits are designed for the final drilling operation and need to be carried out during the final osteotomy site preparation.

9.
Biomech Model Mechanobiol ; 22(2): 611-628, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36542227

RESUMEN

The long-term success of cementless surgery strongly depends on the implant primary stability. The femoral stem initial fixation relies on multiple geometrical and material factors, but their influence on the biomechanical phenomena occurring during the implant insertion is still poorly understood, as they are difficult to quantify in vivo. The aim of the present study is to evaluate the relationship between the resonance frequencies of the bone-implant-ancillary system and the stability of the femoral stem under various biomechanical environments. The interference fit IF, the trabecular bone Young's modulus [Formula: see text] and the bone-implant contact friction coefficient [Formula: see text] are varied to investigate their influence on the implant insertion phenomena and on the system vibration behavior. The results exhibit for all the configurations, a nonlinear increase in the bone-implant contact throughout femoral stem insertion, until the proximal contact is reached. While the pull-out force increases with [Formula: see text], IF and [Formula: see text], the bone-implant contact ratio decreases, which shows that a compromise on the set of parameters could be found in order to achieve the largest bone-implant contact while maintaining sufficient pull-out force. The modal analysis on the range [2-7] kHz shows that the resonance frequencies of the bone-implant-ancillary system increase with the bone-implant contact ratio and the trabecular bone Young's modulus, with a sensitivity that varies over the modes. Both the pull-out forces and the vibration behavior are consistent with previous experimental studies. This study demonstrates the potential of using vibration methods to guide the surgeons for optimizing implant stability in various patients and surgical configurations.


Asunto(s)
Fenómenos Mecánicos , Vibración , Humanos , Análisis de Elementos Finitos , Fémur/cirugía , Fricción , Fenómenos Biomecánicos
10.
J Biomech Eng ; 145(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35838340

RESUMEN

This study aimed to perform quantitative biomechanical analysis for probing the effect of varying thread shapes in an implant for improved primary stability in prosthodontics surgery. Dental implants were designed with square (SQR), buttress (BUT), and triangular (TRI) thread shapes or their combinations. Cone-beam computed tomography images of mandible molar zones in human subjects belonging to three age groups were used for virtual implantation of the designed implants, to quantify patient-specific peri-implant bone microstrain, using finite element analyses. The in silico analyses were carried out considering frictional contact to simulate immediate loading with a static masticatory force of 200 N. To validate computational biomechanics results, compression tests were performed on three-dimensional printed implants having the investigated thread architectures. Bone/implant contact areas were also quantitatively assessed. It was observed that, bone/implant contact was maximum for SQR implants followed by BUT and TRI implants. For all the cases, peak microstrain was recorded in the cervical cortical bone. The combination of different thread shapes in the middle or in the apical part (or both) was demonstrated to improve peri-implant microstrain, particularly for BUT and TRI. Considering 1500-2000 microstrain generates in the peri-implant bone during regular physiological functioning, BUT-SQR, BUT-TRI-SQR, TRI-SQR-BUT, SQR, and SQR-BUT-TRI design concepts were suitable for younger; BUT-TRI-SQR, BUT-SQR-TRI, TRI-SQR-BUT, SQR-BUT, SQR-TRI for middle-aged, and BUT-TRI-SQR, BUT-SQR-TRI, TRI-BUT-SQR, SQR, and SQR-TRI for the older group of human patients.


Asunto(s)
Implantes Dentales , Fenómenos Biomecánicos , Fuerza de la Mordida , Simulación por Computador , Análisis del Estrés Dental , Análisis de Elementos Finitos , Humanos , Persona de Mediana Edad , Estrés Mecánico
11.
Acta Biomater ; 154: 302-311, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36306984

RESUMEN

Dental implant stability is greatly affected by the mechanical properties of the bone-implant interface (BII), and it is key to long-term successful osseointegration. Implant stability is often evaluated using the Resonant Frequency Analysis (RFA) method, and also by the quality of this interface, namely the bone-implant contact (BIC). True to this day, there is a scarcity of models tying BIC, RFA and a spatially and mechanically evolving BII. In this paper, based on the contact/distance osteogenesis concept, a novel numerical spatio-temporal model of the implant, surrounding bone and evolving interface, was developed to assess the evolution of the interfacial stresses on the one hand and the corresponding resonant frequencies on the other. We postulate that, since the BIC percentage reaches saturation over a very short time, long before densification of the interface, it becomes irrelevant as to load transmission between the implant and the bone due to the existence of an open gap. Gap closure is the factor that provides continuity between the implant and the surrounding bone. The results of the calculated RFA evolution match and provide an explanation for the multiple clinical observations of a sharp initial decline in RFA, followed by a gradual increase and plateau formation. STATEMENT OF SIGNIFICANCE: A novel three-dimensional numerical model of an evolving bone-dental implant interface (BII) is presented. The spatio-temporal evolution of the bone-implant contact (BIC) and the BII, based on contact/distance (CO/DO) osteogenesis, is modeled. A central outcome is that, until BII maturation into a solid continuous bone (no open gap between CO-DO fronts), the bone-implant load transfer is hampered, irrespective of the BIC. The resonant frequencies' evolution of the jawbone-BII-implant is calculated to reproduce the well-established implant stability analysis based on the Resonant Frequency Analysis. The results resemble those reported clinically, and here too, the determinant transition occurs only after interfacial gap closure. Those results should motivate clinicians to re-consider structural continuity of the BII rather than the BIC only.


Asunto(s)
Interfase Hueso-Implante , Implantes Dentales , Oseointegración , Huesos
12.
Materials (Basel) ; 15(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955254

RESUMEN

Zirconia ceramic (ZC) implants are becoming more common, but comparisons between preclinical histology and long-term clinical trials are rare. This investigation comprised (1) 8-year clinical follow-up of one-piece ZC or titanium (Ti) implants supporting full overdentures and (2) histomorphometric analysis of the same implants in an animal model, comparing implants with various surface treatments. METHODS: (1) Clinical trial: 24 completely edentulous participants (2 groups of N = 12) received 7 implants (one-piece ball-abutment ZC or Ti; maxilla N = 4, mandible N = 3) restored with implant overdentures. Outcomes after 8-years included survival, peri-implant bone levels, soft-tissue responses, and prosthodontic issues. (2) Preclinical trial: 10 New Zealand sheep received 4 implants bilaterally in the femoral condyle: Southern Implants ZC or Ti one-piece implants, identical to the clinical trial, and controls: Southern ITC® two-piece implants with the same surface or Nobel (NBC) anodised (TiUnite™) surface. %Bone-implant contact (%BIC) was measured after 12 weeks of unloaded healing. RESULTS: 8 of 24 participants (33%) of an average age of 75 ± 8 years were recalled; 21% of original participants had died, and 46% could not be contacted. 80.4% of implants survived; excluding palatal sites, 87.5% of Ti and 79% of ZC implants survived. All failed implants were in the maxilla. Three ZC implants had fractured. Bone loss was similar for Ti vs. ZC; pocket depths (p = 0.04) and attachment levels (p = 0.02) were greater for Ti than ZC implants. (1.7 ± 1.6 mm vs. 1.6 ± 1.3 mm). All implants in sheep femurs survived. %BIC was not statistically different for one-piece blasted surface Ti (80 ± 19%) versus ZC (76 ± 20%) or ITC® (75 ± 16 mm); NBC had significantly higher %BIC than ITC (84 ± 17%, p = 0.4). CONCLUSION: Short-term preclinical results for ZC and Ti one-piece implants showed excellent bone-implant contact in unloaded femoral sites. This differed from the long-term clinical results in older-aged, edentulous participants. While ZC and Ti implants showed equivalent performance, the risks of peri-implantitis and implant loss in older, completely edentulous patients remain a significant factor.

13.
Korean J Orthod ; 52(5): 313-323, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35844098

RESUMEN

Objective: This study aimed to estimate the clinical effects of different types of bone-anchored maxillary protraction devices by using a network meta-analysis. Methods: We searched seven databases for randomized and controlled clinical trials that compared bone-anchored maxillary protraction with tooth-anchored maxillary protraction interventions or untreated groups up to May 2021. After literature selection, data extraction, and quality assessment, we calculated the mean differences, 95% confidence intervals, and surface under the cumulative ranking scores of eleven indicators. Statistical analysis was performed using R statistical software with the GeMTC package based on the Bayesian framework. Results: Six interventions and 667 patients were involved in 18 studies. In comparison with the tooth-anchored groups, the bone-anchored groups showed significantly more increases in Sella-Nasion-Subspinale (°), Subspinale-Nasion-Supramentale(°) and significantly fewer increases in mandibular plane angle and the labial proclination angle of upper incisors. In comparison with the control group, Sella-Nasion-Supramentale(°) decreased without any statistical significance in all treated groups. IMPA (angle of lower incisors and mandibular plane) decreased in groups with facemasks and increased in other groups. Conclusions: Bone-anchored maxillary protraction can promote greater maxillary forward movement and correct the Class III intermaxillary relationship better, in addition to showing less clockwise rotation of mandible and labial proclination of upper incisors. However, strengthening anchorage could not inhibit mandibular growth better and the lingual inclination of lower incisors caused by the treatment is related to the use of a facemask.

14.
Nanomaterials (Basel) ; 12(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35889663

RESUMEN

Miniscrew implants (MSIs) have been widely used as temporary anchorage devices in orthodontic clinics. However, one of their major limitations is the relatively high failure rate. We hypothesize that a biomimetic calcium phosphate (BioCaP) coating layer on mini-pin implants might be able to accelerate the osseointegration, and can be a carrier for biological agents. A novel mini-pin implant to mimic the MSIs was used. BioCaP (amorphous or crystalline) coatings with or without the presence of bovine serum albumin (BSA) were applied on such implants and inserted in the metaphyseal tibia in rats. The percentage of bone to implant contact (BIC) in histomorphometric analysis was used to evaluate the osteoconductivity of such implants from six different groups (n=6 rats per group): (1) no coating no BSA group, (2) no coating BSA adsorption group, (3) amorphous BioCaP coating group, (4) amorphous BioCaP coating-incorporated BSA group, (5) crystalline BioCaP coating group, and (6) crystalline BioCaP coating-incorporated BSA group. Samples were retrieved 3 days, 1 week, 2 weeks, and 4 weeks post-surgery. The results showed that the crystalline BioCaP coating served as a drug carrier with a sustained release profile. Furthermore, the significant increase in BIC occurred at week 1 in the crystalline coating group, but at week 2 or week 4 in other groups. These findings indicate that the crystalline BioCaP coating can be a promising surface modification to facilitate early osseointegration and increase the success rate of miniscrew implants in orthodontic clinics.

15.
J Maxillofac Oral Surg ; 21(2): 533-541, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35712396

RESUMEN

Purpose: Various graft materials have been studied for filling peri-implant gap (PIG), but there was no similar randomized clinical trial to evaluate the effect of Platelet-rich fibrin or alloplast or their combination on vertical bone implant contact (BIC) around immediate implants and their stability over a period of 1 year. Methods: Immediate implants were placed in maxillary anterior region of 30 subjects (n = 10). Either alloplast (group I) or L-PRF (group II) or both (group III) were used to fill the PIG following randomization chart. Vertical BIC was measured on peri-apical radiographs which were taken immediately after placement, after 3, 6 and 12 months using Image J software. Periotest was used to measure the implant stability at the time of implant placement, at 3, 6 and 12 months after implantation. Results: The comparison of distance from implant shoulder to the first visible bone-to-implant contact (IS-BIC) in each group showed statistically significant bone formation on mesial and distal sides over a 1 year period (p < 0.05). There was no significant difference in IS-BIC distance among the three groups at 1 year (p > 0.05). Periotest values showed that there was significant improvement in implant stability in all groups in 1-year period. On intergroup comparison, the mean difference of periotest values was statistically non-significant among three groups (p > 0.05). Conclusions: All the graft materials were effective in promoting osseointegration when used as PIG filling materials alone or in combination around immediate implants in maxillary anterior region. CTRI No: REF/2015/06/009200.

16.
Photobiomodul Photomed Laser Surg ; 40(6): 402-409, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35749706

RESUMEN

Objective: To evaluate the effects of photobiomodulation therapy (PBMT) at distinct energy levels on peri-implant bone healing in extra-short implants in a experimental rabbit model. Background: The effect of PBMT on peri-implant bone healing in short implants remains unclear. This explored the effect of PBMT on extra-short implants in terms of bone-implant contact (BIC) length and rate, and implant stability quotient (ISQ). Methods: Fifteen white New Zealand rabbits were randomly divided into five groups. In all groups, extra-short implants (3.5 × 4 mm; Nucleoss T6, Izmir/Turkey) were placed in both tibias of the rabbits. PBMT was performed in four groups (group 1, 5 J/cm2; group 2, 10 J/cm2; group 3, 20 J/cm2; and group 4, 25 J/cm2); no PBMT was performed in the control group. On the 30th day, the rabbits were sacrificed and peri-implant tissue samples were obtained to determine the BIC length and BIC rate. Implant stability levels were measured by resonance frequency analysis using the Osstell penguin device and were determined as ISQ values on the 1st and 30th days of the study. Results: PBMT significantly increased the BIC length and BIC rate in groups 3 and 4 (p < 0.001). For the ISQ values, there were significant differences between the 1st and 30th day (p < 0.001). On the 30th day, the ISQ values were significantly higher in groups 3 and 4 compared with the remaining groups (p < 0.001). Conclusions: In this study, PBMT improved peri-implant bone healing through increase in BIC length, BIC rate, and ISQ parameter values in extra-short implants.


Asunto(s)
Terapia por Luz de Baja Intensidad , Animales , Conejos , Proyectos Piloto
17.
J Orthop Res ; 40(4): 862-870, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34061392

RESUMEN

Bone microarchitectural parameters significantly contribute to implant fixation strength but the role of bone matrix composition is not well understood. To determine the relative contribution of microarchitecture and bone matrix composition to implant fixation strength, we placed titanium implants in 12-week-old intact Sprague-Dawley rats, ovariectomized-Sprague-Dawley rats, and Zucker diabetic fatty rats. We assessed bone microarchitecture by microcomputed tomography, bone matrix composition by Raman spectroscopy, and implant fixation strength at 2, 6, and 10 weeks postimplantation. A stepwise linear regression model accounted for 83.3% of the variance in implant fixation strength with osteointegration volume/total volume (50.4%), peri-implant trabecular bone volume fraction (14.2%), cortical thickness (9.3%), peri-implant trabecular crystallinity (6.7%), and cortical area (2.8%) as the independent variables. Group comparisons indicated that osseointegration volume/total volume was significantly reduced in the ovariectomy group at Week 2 (~28%) and Week 10 (~21%) as well as in the diabetic group at Week 10 (~34%) as compared with the age matched Sprague-Dawley group. The crystallinity of the trabecular bone was significantly elevated in the ovariectomy group at Week 2 (~4%) but decreased in the diabetic group at Week 10 (~3%) with respect to the Sprague-Dawley group. Our study is the first to show that bone microarchitecture explains most of the variance in implant fixation strength, but that matrix composition is also a contributing factor. Therefore, treatment strategies aimed at improving bone-implant contact and peri-implant bone volume without compromising matrix quality should be prioritized.


Asunto(s)
Implantes Experimentales , Oseointegración , Animales , Femenino , Humanos , Ovariectomía , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Titanio , Microtomografía por Rayos X/métodos
18.
Clin Oral Investig ; 26(1): 969-979, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34363102

RESUMEN

OBJECTIVE: In the present study, we intend to assess the function of Sema3A in osteointegration of titanium implants both in vivo and in vitro. MATERIAL AND METHODS: Briefly, Sema3A was transfected in HBMSCs cells to detect its effect on osteogenesis. Subsequently, an in vivo rabbit model was established. Eighteen female rabbits were randomly assigned into three groups (n=6), and rabbits in the two treatment groups (OVX groups) were subjected to bilateral ovariectomy, while those in the control group were treated with sham operation. Twelve weeks later, we first examined expression levels of Sema3A in rabbits of the three groups. Titanium implants were implanted in rabbit proximal tibia. Specifically, rabbits in sham group were implanted with Matrigel, while the remaining in the OVX experimental group (OVX+Sema3A group) and OVX group were implanted with Matrigel containing Sema3A adeno-associated virus or empty vector, respectively. RESULTS: Histomorphometry results uncovered that rabbits in the OVX+Sema3A group had a significantly higher BIC compared with those of the OVX group on the 12th week of post-implantation. And compared with the OVX group, the maximum push-out force increased by 89.4%, and the stiffness increased by 39.4%, the toughness increased by 63.8% in the OVX+Sema3A group at 12 weeks. CONCLUSION: Sema3A has a positive effect on promoting early osseointegration of titanium implants in osteoporotic rabbits. CLINICAL RELEVANCE: Our research found that Sema3A can improve the osteogenic ability of bone marrow stem cells and promotes osseointegration during osteoporosis.


Asunto(s)
Implantes Dentales , Osteoporosis , Animales , Femenino , Conejos , Oseointegración , Osteoporosis/cirugía , Ovariectomía , Tibia , Titanio
19.
Micromachines (Basel) ; 12(11)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34832764

RESUMEN

Innovative nanomaterials are required for the coatings of titanium (Ti) implants to ensure the activation of Ti surfaces for improved osseointegration, enhanced bone fracture healing and bone regeneration. This paper presents a systematic investigation of biomimetic composite (BC) coatings on Ti implant surfaces in a rat model of a diaphyseal femoral fracture. Methodological approaches of surface modification of the Ti implants via the usual joining methods (e.g., grit blasting and acid etching) and advanced physicochemical coating via a self-assembled dip-coating method were used. The biomimetic procedure used multi-substituted hydroxyapatite (ms-HAP) HAP-1.5 wt% Mg-0.2 wt% Zn-0.2 wt% Si nanoparticles (NPs), which were functionalized using collagen type 1 molecules (COL), resulting in ms-HAP/COL (core/shell) NPs that were embedded into a polylactic acid (PLA) matrix and finally covered with COL layers, obtaining the ms-HAP/COL@PLA/COL composite. To assess the osseointegration issue, first, the thickness, surface morphology and roughness of the BC coating on the Ti implants were determined using AFM and SEM. The BC-coated Ti implants and uncoated Ti implants were then used in Wistar albino rats with a diaphyseal femoral fracture, both in the absence and the presence of high-frequency pulsed electromagnetic shortwave (HF-PESW) stimulation. This study was performed using a bone marker serum concentration and histological and computer tomography (micro-CT) analysis at 2 and 8 weeks after surgical implantation. The implant osseointegration was evaluated through the bone-implant contact (BIC). The bone-implant interface was investigated using FE-SEM images and EDX spectra of the retrieved surgical implants at 8 weeks in the four animal groups. The obtained results showed significantly higher bone-implants contact and bone volume per tissue volume, as well as a greater amount of newly formed bone, in the BC-coated Ti implants than in the uncoated Ti implants. Direct bone-implant contact was also confirmed via histological examination. The results of this study confirmed that these biomimetic composite coatings on Ti implants were essential for a significant enhancement of osseointegration of BC-coated Ti implants and bone regeneration. This research provides a novel strategy for the treatment of bone fractures with possible orthopedic applications.

20.
J Oral Biol Craniofac Res ; 11(4): 524-528, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377660

RESUMEN

OBJECTIVE: Researchs of the effects of ankaferd blood stopper (ABS) on bone healing metabolism have revealed that it affects bone regeneration positively. The exact mechanism by which this positive effect on bone tissue metabolism is not known. The aim of this study is to biomechanic and biochemical analysis of the effects of the local ABS application on osseointegration of 3 different surfaced titanium implants. MATERIAL & METHODS: Spraque dawley rats were divided machined surfaced (MS) (n â€‹= â€‹10), sandblasted and large acid grid (SLA) (n â€‹= â€‹10) and resorbable blast material (RBM) (n â€‹= â€‹10) surfaced implants. ABS applied locally during the surgical application of the titanium implant before insertion in bone sockets. After 4 weeks experimental period the rats sacrificed and implants with surrounding bone tissues were removed to reverse torque analysis (Newton), blood samples collected to biochemical analysis (ALP, calcium, P). RESULTS: Biomechanic bone implant contact ratio detected higher in SLA surfaced implants compared with the RBM and controls (P â€‹< â€‹0,05). Phosphor levels detected lower in RBM implant group compared with the controls and SLA (P â€‹< â€‹0,05). Additionally; phosphor levels detected highly in controls compared with the RBM implants. CONCLUSION: According the biomechanical parameters ABS may be more effective in SLA and RBM surfaced implants when locally applied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA