Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 690841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335659

RESUMEN

Prunus mume is one of the most important woody perennials for edible and ornamental use. Despite a substantial variation in the flowering phenology among the P. mume germplasm resources, the genetic control for flowering time remains to be elucidated. In this study, we examined five blooming time-related traits of 235 P. mume landraces for 2 years. Based on the phenotypic data, we performed genome-wide association studies, which included a combination of marker- and gene-based association tests, and identified 1,445 candidate genes that are consistently linked with flowering time across multiple years. Furthermore, we assessed the global transcriptome change of floral buds from the two P. mume cultivars exhibiting contrasting bloom dates and detected 617 associated genes that were differentially expressed during the flowering process. By integrating a co-expression network analysis, we screened out 191 gene candidates of conserved transcriptional pattern during blooming across cultivars. Finally, we validated the temporal expression profiles of these candidates and highlighted their putative roles in regulating floral bud break and blooming time in P. mume. Our findings are important to expand the understanding of flowering time control in woody perennials and will boost the molecular breeding of novel varieties in P. mume.

2.
BMC Genomics ; 22(1): 187, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726679

RESUMEN

BACKGROUND: Environmental adaptation and expanding harvest seasons are primary goals of most peach [Prunus persica (L.) Batsch] breeding programs. Breeding perennial crops is a challenging task due to their long breeding cycles and large tree size. Pedigree-based analysis using pedigreed families followed by haplotype construction creates a platform for QTL and marker identification, validation, and the use of marker-assisted selection in breeding programs. RESULTS: Phenotypic data of seven F1 low to medium chill full-sib families were collected over 2 years at two locations and genotyped using the 9 K SNP Illumina array. Three QTLs were discovered for bloom date (BD) and mapped on linkage group 1 (LG1) (172-182 cM), LG4 (48-54 cM), and LG7 (62-70 cM), explaining 17-54%, 11-55%, and 11-18% of the phenotypic variance, respectively. The QTL for ripening date (RD) and fruit development period (FDP) on LG4 was co-localized at the central part of LG4 (40-46 cM) and explained between 40 and 75% of the phenotypic variance. Haplotype analyses revealed SNP haplotypes and predictive SNP marker(s) associated with desired QTL alleles and the presence of multiple functional alleles with different effects for a single locus for RD and FDP. CONCLUSIONS: A multiple pedigree-linked families approach validated major QTLs for the three key phenological traits which were reported in previous studies across diverse materials, geographical distributions, and QTL mapping methods. Haplotype characterization of these genomic regions differentiates this study from the previous QTL studies. Our results will provide the peach breeder with the haplotypes for three BD QTLs and one RD/FDP QTL to create predictive DNA-based molecular marker tests to select parents and/or seedlings that have desired QTL alleles and cull unwanted genotypes in early seedling stages.


Asunto(s)
Prunus persica , Linaje , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Prunus persica/genética , Sitios de Carácter Cuantitativo
3.
Front Plant Sci ; 11: 180, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180783

RESUMEN

Dormancy is a physiological state that plants enter for winter hardiness. Environmental-induced dormancy onset and release in temperate perennials coordinate growth cessation and resumption, but how the entire process, especially chilling-dependent dormancy release and flowering, is regulated remains largely unclear. We utilized the transcriptome profiles of floral buds from fall to spring in apricot (Prunus armeniaca) genotypes with contrasting bloom dates and peach (Prunus persica) genotypes with contrasting chilling requirements (CR) to explore the genetic regulation of bud dormancy. We identified distinct gene expression programming patterns in endodormancy and ecodormancy that reproducibly occur between different genotypes and species. During the transition from endo- to eco-dormancy, 1,367 and 2,102 genes changed in expression in apricot and peach, respectively. Over 600 differentially expressed genes were shared in peach and apricot, including three DORMANCY ASSOCIATED MADS-box (DAM) genes (DAM4, DAM5, and DAM6). Of the shared genes, 99 are located within peach CR quantitative trait loci, suggesting these genes as candidates for dormancy regulation. Co-expression and functional analyses revealed that distinctive metabolic processes distinguish dormancy stages, with genes expressed during endodormancy involved in chromatin remodeling and reproduction, while the genes induced at ecodormancy were mainly related to pollen development and cell wall biosynthesis. Gene expression analyses between two Prunus species highlighted the conserved transcriptional control of physiological activities in endodormancy and ecodormancy and revealed genes that may be involved in the transition between the two stages.

4.
Tree Physiol ; 39(7): 1136-1148, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31070767

RESUMEN

Trees use many mechanisms to adapt and respond to stressful conditions. The phenylpropanoid pathway in particular is known to be associated with a diverse suite of plant stress responses. In this study, we explored the relationship between the phenylpropanoid pathway metabolite production, gene expression and adaptive trait variation associated with floral bud reactivation during and following dormancy in Prunus armeniaca L. (apricot). Concentrations of eight phenylpropanoid metabolites were measured during chill accumulation and at developmental stages corresponding to the emergence of sepals and petals in floral buds of varieties that differ phenotypically in bloom date (BD). A significant interaction effect of chill hours and BD phenotype on the concentration of each of the compounds was observed (mixed analysis of variance, P < 0.05), with the concentration of most phenylpropanoid metabolites dropping precipitously when sepals and petals emerged. While phenylpropanoid biosynthetic gene expression patterns were more variable in general, expression changed over time and was impacted, although to a lesser degree, by BD phenotype. Furthermore, separation of BD phenotypic groups was most pronounced when early and late BD varieties were at different developmental stages, i.e., 800 chill hours. Taken together, these results suggest that the phenylpropanoid pathway is associated with floral bud reactivation in apricot. Furthermore, we show that the phenylpropanoid pathway is also impacted by phenological trait variation associated with dormancy. A better understanding of how apricot and other perennial tree species respond and adapt to environmental perturbations will be critical for improvement programs aimed at identifying and breeding trees more suitable for rapidly changing environments.


Asunto(s)
Prunus armeniaca , Flores , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA