Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.112
Filtrar
1.
Talanta ; 281: 126855, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39265420

RESUMEN

A novel ionophore-based fluorescent nanosensor has been successfully fabricated for the sensitive and selective detection of Cu2+ ions. The nanosensor was constructed through self-assembly of amphiphilic block copolymers, incorporating elesclomol as a Cu2+ ionophore and long-chain dialkylcarbocyanines (DiD) as a fluorescent dye. This design exhibits an "ON/OFF" fluorescence response, where Cu2⁺ ions are selectively sequestered within the nanosensors, resulting in fluorescence quenching of DiD. This strategy enables rapid and highly selective Cu2⁺ sensing with remarkable fluorescence quenching efficiency (up to 93.5 %) and an exceptionally low detection limit of 28.6 nM. The linear detection range extends over two orders of magnitude (0.05-10 µM). Furthermore, the feasibility of this nanosensor for practical applications was confirmed through successful determination of Cu2+ in real water and beer samples, with excellent recovery rates. This nanosensor offers advantages of simplicity, rapidity, and cost-effectiveness, holding significant potential for sensitive and selective Cu2+ detection in various biological and environmental samples.

2.
Polymers (Basel) ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274025

RESUMEN

The demulsification effect of three types of block copolymers, BP123, BPF123, and H123, with the same PEO and PPO segments but different hydrophobic modification groups on crude oil emulsions and the properties of oil-water interfaces were investigated using demulsification experiments, an interfacial tensiometer, and surface viscoelastic and zeta potential instruments in this paper. The results showed that the hydrophobic modification group of the block copolymers had great effects on the demulsification performance. The H123 block copolymers with the strongest hydrophobicity had the best demulsification effect on the crude oil emulsions. The properties of the oil-water interfaces indicated that the modified block copolymers achieved the demulsification of crude oil emulsions by reducing the strength of the oil-water interfacial film and the interfacial tension.

3.
ACS Nano ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285511

RESUMEN

Block copolymers are recognized as a valuable platform for creating nanostructured materials. Morphologies formed by block copolymer self-assembly can be transferred into a wide range of inorganic materials, enabling applications including energy storage and metamaterials. However, imaging of the underlying, often complex, nanostructures in large volumes has remained a challenge, limiting progress in materials development. Taking advantage of recent advances in X-ray nanotomography, we noninvasively imaged exceptionally large volumes of nanostructured hybrid materials at high resolution, revealing a single-diamond morphology in a triblock terpolymer-gold composite network. This morphology, which is ubiquitous in nature, has so far remained elusive in block copolymer-derived materials, despite its potential to create materials with large photonic bandgaps. The discovery was made possible by the precise analysis of distortions in a large volume of the self-assembled diamond network, which are difficult to unambiguously assess using traditional characterization tools. We anticipate that high-resolution X-ray nanotomography, which allows imaging of much larger sample volumes than electron-based tomography, will become a powerful tool for the quantitative analysis of complex nanostructures and that structures such as the triblock terpolymer-directed single diamond will enable the generation of advanced multicomponent composites with hitherto unknown property profiles.

4.
Small ; : e2404297, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282822

RESUMEN

Polymer solid-state electrolytes offer great promise for battery materials with high energy density, mechanical stability, and improved safety. However, their low ion conductivities have so far limited their potential applications. Here, it is shown for poly(ethylene oxide) block copolymers that the super-stoichiometric addition of lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as lithium salt leads to the formation of a crystalline PEO block copolymer phase with exceptionally high ion conductivities and low activation energies. The addition of LiTFSI further induces block copolymer phase transitions into bi-continuous Fddd and gyroid network morphologies, providing continuous 3D conduction pathways. Both effects lead to solid-state block copolymer electrolyte membranes with ion conductivities of up to 1·10-1 S cm-1 at 90 °C, decreasing only moderately to 4·10-2 S cm-1 at room temperature, and to >1·10-3 S cm-1 at -20 °C, corresponding to activation energies as low as 0.19 eV. The co-crystallization of PEO and LiTFSI with ether and carbonate solvents is observed to play a key role to realize a super-ionic conduction mechanism. The discovery of PEO super-ionic conductivity at high lithium concentrations opens a new pathway for fabrication of solid polymer electrolyte membranes with sufficiently high ion conductivities over a broad temperature range with widespread applications in electrical devices.

5.
Carbohydr Polym ; 345: 122576, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227123

RESUMEN

Dihydrazide (ADH) and dioxyamine (PDHA) were assessed for their efficacy in coupling chitosan and dextran via their reducing ends. Initially, the end-functionalization of the individual polysaccharide blocks was investigated. Under non-reducing conditions, chitosan with a 2,5-anhydro-D-mannose unit at its reducing end exhibited high reactivity with both PDHA and ADH. Dextran, with a normal reducing end, showed superior reactivity with PDHA compared to ADH, although complete conversion with ADH could be achieved under reductive conditions with NaBH3CN. Importantly, the oxime bond in PDHA conjugates exhibited greater stability against hydrolysis compared to the hydrazone bond in ADH conjugates. The optimal block coupling method consisted in reacting chitosan with an excess of dextran pre-functionalized with PDHA. The copolysaccharides could be synthesized in high yields under both reducing and non-reducing conditions. This methodology was applied to relatively long polysaccharide blocks with molecular weight up to 14,000 g/mol for chitosan and up to 40,000 g/mol for dextran. Surprisingly, block copolysaccharides did not self-assemble at neutral or basic pH; rather, they precipitated due to hydrogen bonding between neutralized amino groups of chitosan. However, nanoparticles could be obtained through a nanoprecipitation approach.

6.
Nano Lett ; 24(35): 11020-11027, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39193990

RESUMEN

Biomimicking natural structures to create structural materials with superior mechanical performance is an area of extensive attention, yet achieving both high strength and toughness remains challenging. This study presents a novel bottom-up approach using self-assembled block copolymer templating to synthesize bicontinuous nanohybrids composed of well-ordered nanonetwork hydroxyapatite (HAp) embedded in poly(methyl methacrylate) (PMMA). This structuring transforms intrinsically brittle HAp into a ductile material, while hybridization with PMMA alleviates the strength reduction caused by porosity. The resultant bicontinuous PMMA/HAp nanohybrids, reinforced at the interface, exhibit high strength and toughness due to the combined effects of topology, nanosize, and hybridization. This work suggests a conceptual framework for fabricating flexible thin films with mechanical properties significantly surpassing those of traditional composites and top-down approaches.

7.
Polymers (Basel) ; 16(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125257

RESUMEN

This study aimed to investigate the potential of polycaprolactone-vitamin E TPGS (PCL-TPGS) micelles as a delivery system for oral administration of paclitaxel (PTX). The PCL-TPGS copolymer was synthesized using ring opening polymerization, and PTX-loaded PCL-TPGS micelles (PTX micelles) were prepared via a co-solvent evaporation method. Characterization of these micelles included measurements of size, polydispersity, and encapsulation efficiency. The cellular uptake of PTX micelles was evaluated in Caco-2 cells using rhodamine 123 (Rh123) as a fluorescent probe. Moreover, an everted rat sac study was conducted to evaluate the ex vivo permeability of PTX micelles. Additionally, a comparative pharmacokinetic study of PTX micelles versus the marketed formulation, Ebetaxel® (a Taxol generic), was performed after a single oral administration to rats. The results demonstrated that the micellar formulation significantly improved PTX solubility (nearly 1 mg/mL). The in vitro stability and release of PTX micelles in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) demonstrated that PTX micelles remained stable for up to 24 h and significantly slowed the release of PTX in both media compared to Ebetaxel®. The in vitro cellular uptake, ex vivo intestinal permeability, and in vivo pharmacokinetic profile demonstrated that PTX micelles enhanced the permeability and facilitated a rapid absorption of the drug. Conclusively, the PCL7000-TPGS3500 micelles exhibit potential as an effective oral delivery system for PTX.

8.
Polymers (Basel) ; 16(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39204600

RESUMEN

Triblock copolymers such as styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) have been widely used as an anion exchange membrane for fuel cells due to their phase separation properties. However, modifying the polymer architecture for optimized membrane properties is still challenging. This research develops a strategy to control the membrane morphology based on quaternized SEBS (SEBS-Q) by dual-tapering the interfacial block sequences. The structural and transport properties of SEBS-Q with various tapering styles at different hydration levels are systematically investigated by coarse-grained molecular simulations. The results show that the introduction of the tapered regions induces the formation of a bicontinuous water domain and promotes the diffusivity of the mobile components. The interplay between the solvation of the quaternary groups and the tapered fraction determines the conformation of polymer chains among the hydrophobic-hydrophilic subdomains. The strategy presented here provides a new path to fabricating fuel cell membranes with controlled microstructures.

9.
Mater Today Bio ; 28: 101199, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39205875

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease where standard-of-care chemotherapeutic drugs have limited efficacy due to the development of drug resistance and poor drug delivery caused by a highly desmoplastic tumor microenvironment. Combining multiple drugs in a tumor-targeting carrier would be a favorable approach to overcome these limitations. Hence, a tumor-targeted peptide (TTP) conjugated amphiphilic tri-block copolymer was developed to make targeted polymer nanoparticles (TTP-PNPs) serving as a vehicle for carrying gemcitabine (Gem), paclitaxel (PTX), and their combination (Gem + PTX). The TTP-PNPs in the form of empty polymer (P), single drug-loaded [P(Gem) and P(PTX)], and dual drug-loaded [P(Gem + PTX)] polymer nanoformulations exhibited stable and homogenous spherical shapes with 110-160 nm size. These nanoformulations demonstrated excellent stability under in vitro physiological conditions and led to an efficient release of the drugs in the presence of reduced glutathione (GSH). The efficacy of these nanoparticles was thoroughly evaluated in vitro and in vivo, demonstrating a notable capacity to selectively target and restrict PDAC cells (PANC-1 and KPC) growth. The cellular uptake and biodistribution study showed a significantly higher tumor-targeting ability of TTP-PNPs than PNPs without TTP. Notably, P(Gem + PTX) exhibited the lowest IC50 compared to all other controls and showed heightened synergistic effects in both cell lines. Furthermore, P(Gem + PTX) showed a significantly better tumor reduction and median overall survival in mouse models than single drug-loaded TTP-PNPs or a combination of free drugs (Gem + PTX). In summary, our TTP-PNP system shows great promise as a novel platform for delivering Gem + PTX specifically to pancreatic cancer (PC), maximizing the therapeutic benefits with lower concentrations of the drugs and potentially reducing toxic side effects.

10.
Adv Mater ; : e2404560, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206611

RESUMEN

The self-assembly and nonsolvent-induced phase separation (SNIPS) process of block copolymers and solvents enables the fabrication of integral-asymmetric, isoporous membranes. An isoporous top layer is formed by evaporation-induced self-assembly (EISA) and imparts selectivity for ultrafiltration of functional macromolecules or water purification. This selective layer is supported by a macroporous bottom structure that is formed by nonsolvent-induced phase separation (NIPS) providing mechanical stability. Thereby the permeability/selectivity tradeoff is optimized. The SNIPS fabrication involves various physical phenomena-e.g., evaporation, self-assembly, macrophase separation, vitrification - and multiple structural, thermodynamic, kinetic, and process parameters. Optimizing membrane properties and rationally designing fabrication processes is a challenge which particle simulation can significantly contribute to. Using large-scale particle simulations, it is observed that 1) a small incompatibility between matrix-forming block of the copolymer and nonsolvent, 2) a glassy arrest that occurs at a smaller polymer concentration, or 3) a higher dynamical contrast between polymer and solvent results in a finer, spongy substructure, whereas the opposite parameter choice gives rise to larger macropores with an elongated shape. These observations are confirmed by comparison to experiments on polystyrene (PS)-block-poly(4-vinylpyridine) (P4VP) diblock copolymer membranes, varying the chemical nature of the coagulant or the temperature of coagulation bath.

11.
Int J Biol Macromol ; 277(Pt 2): 133901, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038585

RESUMEN

In this study, thermo-sensitive poly(N-isopropyl acrylamide) (PNP) was polymerized with pH-sensitive poly(acrylic acid) (PAA) to prepare a PAA-b-PNP block copolymer. Above its cloud point, the block copolymer self-assembled into nanoparticles (NPs), encapsulating the anticancer drug camptothecin (CPT) in situ. Chitosan (CS) and fucoidan (Fu) further modified these NPs, forming Fu-CPT-NPs to enhance biocompatibility, drug encapsulation efficiency (EE), and loading content (LC), crucially facilitating P-selectin targeting of lung cancer cells through a drug delivery system. The EE and LC reached 82 % and 3.5 %, respectively. According to transmission electron microscope observation, these Fu-CPT-NPs had uniform spherical shapes with an average diameter of ca. 250 nm. They could maintain their stability in a pH range of 5.0-6.8. In vitro experimental results revealed that the Fu-CPT-NPs exhibited good biocompatibility and had anticancer activity after encapsulating CPT. It could deliver CPT to cancer cells by targeting P-selectin, effectively increasing cell uptake and inducing cell apoptosis. Animal study results showed that the Fu-CPT-NPs inhibited lung tumor growth by increasing tumor cell apoptosis without causing significant tissue damage related to generating reactive oxygen species in lung cancer cells. This system can effectively improve drug-delivery efficiency and treatment effects and has great potential for treating lung cancer.


Asunto(s)
Camptotecina , Quitosano , Neoplasias Pulmonares , Nanopartículas , Polisacáridos , Quitosano/química , Polisacáridos/química , Polisacáridos/farmacología , Humanos , Camptotecina/farmacología , Camptotecina/química , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Nanopartículas/química , Animales , Ratones , Apoptosis/efectos de los fármacos , Portadores de Fármacos/química , Células A549 , Línea Celular Tumoral , Resinas Acrílicas/química , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Selectina-P/metabolismo , Polímeros/química
12.
Sci Rep ; 14(1): 17601, 2024 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080452

RESUMEN

Biodegradable poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) triblock copolymer could potentially be used in bioplastic applications because it is more flexible than PLLA. However, investigations into modifying PLLA-PEG-PLLA with effective fillers are still required. In this work, bamboo biochar (BC) was used as an eco-friendly and cost-effective filler for the flexible PLLA-PEG-PLLA. The influences of BC addition on crystallization properties, thermal stability, hydrophilicity, and mechanical properties of the PLLA-PEG-PLLA were explored and compared to those of the PLLA. The PLLA-PEG-PLLA matrix and BC filler were found to have strong interfacial adhesion and good phase compatibility, while the PLLA/BC composites displayed weak interfacial adhesion and poor phase compatibility. For the PLLA-PEG-PLLA, the addition of BC induced a nucleation effect that was characterized by a decrease in the cold crystallization temperature from 76 to 71-75 °C and an increase in the crystallinity from 18.6 to 21.8-24.0%; however, this effect was not observed for the PLLA. When compared to pure PLLA-PEG-PLLA, the PLLA-PEG-PLLA/BC composites displayed greater thermal stability, tensile stress, and Young's modulus. Temperature at maximum decomposition rate (Td,max) of PLLA end-blocks increased from 315 to 319-342 °C. Ultimate tensile stress of PLLA-PEG-PLLA matrix improved from 14.5 to 16.2-22.6 MPa and Young's modulus increased from 220 to 280-340 MPa. Based on the findings, the crystallizability, thermal stability, and mechanical properties of the flexible PLLA-PEG-PLLA bioplastic were all enhanced by the use of BC as a multi-functional filler.


Asunto(s)
Carbón Orgánico , Poliésteres , Polietilenglicoles , Poliésteres/química , Polietilenglicoles/química , Carbón Orgánico/química , Materiales Biocompatibles/química , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales , Cristalización
13.
J Mol Model ; 30(8): 293, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080083

RESUMEN

CONTEXT: Thermoplastic elastomer styrene-ethylene-butylene-styrene block copolymer (SEBS) has excellent mechanical properties and aging resistance, so it has good application prospects in thermoplastic solid propellants. The selection of plasticizer is one of the keys to the formulation design of thermoplastic solid propellant. The compatibility of the plasticizer with the polymer determines the plasticizer's ability to plasticize the polymer's molecular chain segments. Herein, the compatibility of four plasticizers with SEBS was investigated, and the results declared that the order of compatibility between SEBS and the four plasticizers is SEBS/WO > SEBS/DOS > SEBS/DEP > SEBS/TA. METHODS: Physical compatibility of SEBS binder with plasticizer triacetin (TA), diethyl phthalate (DEP), dioctyl sebacate (DOS), and 26# industrial white oil (WO) was simulated using molecular dynamics (MD) method via Materials Studio 8.0, and the simulation results were verified experimentally. The results showed that the compatibility of SEBS with these plasticizers can be comprehensively evaluated by analyzing solubility parameters, radial distribution functions, and blend miscibility simulations.

14.
Polymers (Basel) ; 16(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065395

RESUMEN

Polymer blends of poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) and high-density polyethylene (HDPE) with different blend ratios were prepared by a melt blending method. The thermal, morphological, mechanical, opacity, and biodegradation properties of the PLLA-PEG-PLLA/HDPE blends were investigated and compared to the PLLA/HDPE blends. The blending of HDPE improved the crystallization ability and thermal stability of the PLLA-PEG-PLLA; however, these properties were not improved for the PLLA. The morphology of the blended films showed that the PLLA-PEG-PLLA/HDPE blends had smaller dispersed phases compared to the PLLA/HDPE blends. The PLLA-PEG-PLLA/HDPE blends exhibited higher flexibility, lower opacity, and faster biodegradation and bioerosion in soil than the PLLA/HDPE blends. Therefore, these PLLA-PEG-PLLA/HDPE blends have a good potential for use as flexible and partially biodegradable materials.

15.
ACS Appl Mater Interfaces ; 16(30): 40263-40274, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39036947

RESUMEN

This study aims to develop a strategy for the fabrication of multilayer nanopatterns through sequential self-assembly of lamella-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS) block copolymer (BCP) from solvent annealing. By simply tuning the solvent selectivity, a variety of self-assembled BCP thin-film morphologies, including hexagonal perforated lamellae (HPL), parallel cylinders, and spheres, can be obtained from single-composition PS-b-PDMS. By taking advantage of reactive ion etching (RIE), topographic SiO2 monoliths with well-ordered arrays of hexagonally packed holes, parallel lines, and hexagonally packed dots can be formed. Subsequently, hole-on-dot and line-on-hole hierarchical textures can be created through a layer-by-layer process with RIE treatment as evidenced experimentally and confirmed theoretically. The results demonstrated the feasibility of creating three-dimensional (3D) nanopatterning from the sequential self-assembly of single-composition PS-b-PDMS via solvent annealing, providing an appealing process for nano-MEMS manufacturing based on BCP lithography.

16.
ACS Appl Mater Interfaces ; 16(28): 37212-37225, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38965654

RESUMEN

Inspired by animals with a slippery epidermis, durable slippery antibiofouling coatings with liquid-like wetting buckled surfaces are successfully constructed in this study by combining dynamic-interfacial-release-induced buckling with self-assembled silicon-containing diblock copolymer (diBCP). The core diBCP material is polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS). Because silicon-containing polymers with intrinsic characters of low surface energy, they easily flow over and cover a surface after it has undergone controlled thermal treatment, generating a slippery wetting layer on which can eliminate polar interactions with biomolecules. Additionally, microbuckled patterns result in curved surfaces, which offer fewer points at which organisms can attach to the surface. Different from traditional slippery liquid-infused porous surfaces, the proposed liquid-like PDMS wetting layer, chemically bonded with PS, is stable and slippery but does not flow away. PS-b-PDMS diBCPs with various PDMS volume fractions are studied to compare the influence of PDMS segment length on antibiofouling performance. The surface characteristics of the diBCPs─ease of processing, transparency, and antibiofouling, anti-icing, and self-cleaning abilities─are examined under various conditions. Being able to fabricate ecofriendly silicon-based lubricant layers without needing to use fluorinated compounds and costly material precursors is an advantage in industrial practice.

17.
Angew Chem Int Ed Engl ; : e202410908, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954489

RESUMEN

Efficient occlusion of particulate additives into a single crystal has garnered an ever-increasing attention in materials science because it offers a counter-intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization-induced self-assembly is employed to synthesize well-defined and highly anionic poly(3-sulfopropyl methacrylate potassium)41-block-poly(benzyl methacrylate)500 [PSPMA41-PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization.

18.
Biofouling ; 40(7): 377-389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955544

RESUMEN

Biofouling on marine surfaces causes immense material and financial harm for maritime vessels and related marine industries. Previous reports have shown the effectiveness of amphiphilic coating systems based on poly(dimethylsiloxane) (PDMS) against such marine foulers. Recent studies on biofouling mechanisms have also demonstrated acidic microenvironments in biofilms and stronger adhesion at low-pH conditions. This report presents the design and utilization of amphiphilic polymer coatings with buffer functionalities as an active disruptor against four different marine foulers. Specifically, this study explores both neutral and zwitterionic buffer systems for marine coatings, offering insights into coating design. Overall, these buffer systems were found to improve foulant removal, and unexpectedly were the most effective against the diatom Navicula incerta.


Asunto(s)
Biopelículas , Incrustaciones Biológicas , Diatomeas , Dimetilpolisiloxanos , Incrustaciones Biológicas/prevención & control , Diatomeas/fisiología , Dimetilpolisiloxanos/química , Animales , Tampones (Química) , Propiedades de Superficie , Concentración de Iones de Hidrógeno
19.
Drug Discov Today ; 29(8): 104098, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38997002

RESUMEN

Block copolymer micelles, formed by the self-assembly of amphiphilic polymers, address formulation challenges, such as poor drug solubility and permeability. These micelles offer advantages including a smaller size, easier preparation, sterilization, and superior solubilization, compared with other nanocarriers. Preclinical studies have shown promising results, advancing them toward clinical trials. Their mucoadhesive properties enhance and prolong contact with the ocular surface, and their small size allows deeper penetration through tissues, such as the cornea. Additionally, copolymeric micelles improve the solubility and stability of hydrophobic drugs, sustain drug release, and allow for surface modifications to enhance biocompatibility. Despite these benefits, long-term stability remains a challenge. In this review, we highlight the preclinical performance, structural frameworks, preparation techniques, physicochemical properties, current developments, and prospects of block copolymer micelles as ocular drug delivery systems.


Asunto(s)
Administración Oftálmica , Sistemas de Liberación de Medicamentos , Micelas , Polímeros , Humanos , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Animales , Portadores de Fármacos/química , Solubilidad
20.
ACS Appl Mater Interfaces ; 16(31): 41332-41340, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39049156

RESUMEN

Precisely controlling the spatial distributions and arrangements of metal nanoparticles (NPs) into block copolymers is of great importance for fabricating novel nanomaterials with the desired optical and electronic properties. Herein, we develop a simple yet versatile strategy to prepare organic/inorganic nanosheets formed by the coassembly of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and PS tethered gold nanoparticles (AuNPs@PS) within emulsion droplets. The arrangement of the AuNPs@PS building blocks within the block copolymers (BCP)/AuNPs nanosheets can be adjusted by tuning the effective size ratio (λeff), which can be controlled by the core diameter of the AuNPs and the molecular weight of the PS. Furthermore, the content of the AuNPs is also another essential parameter to manipulate the structures of the nanosheets with the specific λeff. Thus, the BCP/AuNPs hybrid nanosheets with controllable distributions and arrangements of the AuNPs were successfully prepared via tuning of λeff and the content of AuNPs. This study provides a facile way to fabricate well-ordered hybrid nanosheets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA