Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rice (N Y) ; 17(1): 61, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39271542

RESUMEN

The transcription factor WRKYs play pivotal roles in the adapting to adverse environments in plants. Prior research has demonstrated the involvement of OsWRKY70 in resistance against herbivores and its response to abiotic stress. Here, we reported the functional analysis of OsWRKY70 in immunity against fungal diseases and cold tolerance. The results revealed that OsWRKY70 was induced by various Magnaporthe oryzae strains. Knock out mutants of OsWRKY70, which were generated by the CRISPR/Cas9 system, exhibited enhanced resistance to M. oryzae. This was consistent with fortifying the reactive oxygen species (ROS) burst after inoculation in the mutants, elevated transcript levels of defense-responsive genes (OsPR1b, OsPBZ1, OsPOX8.1 and OsPOX22.3) and the observation of the sluggish growth of invasive hyphae under fluorescence microscope. RNA sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) validations demonstrated that differentially expressed genes were related to plant-pathogen interactions, hormone transduction and MAPK cascades. Notably, OsbHLH6, a key component of the JA signaling pathway, was down-regulated in the mutants compared to wild type plants. Further investigation confirmed that OsWRKY70 bound to the promoter of OsbHLH6 by semi-in vivo chromatin immunoprecipitation (ChIP). Additionally, the loss-function of OsWRKY70 impaired cold tolerance in rice. The enhanced susceptibility in the mutants characterized by excessive ROS production, elevated ion leakage rate and increased malondialdehyde content, as well as decreased activity of catalase (CAT) and peroxidase (POD) under low temperature stress was, which might be attributed to down-regulation of cold-responsive genes (OsLti6b and OsICE1). In conclusion, our findings indicate that OsWRKY70 negatively contributes to blast resistance but positively regulates cold tolerance in rice, providing a strategy for crop breeding with tolerance to stress.

2.
Plants (Basel) ; 13(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273959

RESUMEN

Rice blast is one of the most devastating biotic stresses that limits rice productivity. The North Eastern Hill (NEH) region of India is considered to be one of the primary centres of diversity for both rice and pathotypes of Magnaporthe grisea. Therefore, the present study was carried out to elucidate the genetic basis of leaf and neck blast resistance under Meghalaya conditions. A set of 80 diverse genotypes (natural population) and 2 F2 populations involving resistant parent, a wildtype landrace, LR 5 (Lal Jangali) and susceptible genotypes Sambha Mahsuri SUB 1 (SMS) and LR 26 (Chakhao Poireiton) were used for association analysis of reported major gene-linked markers with leaf and neck blast resistance to identify major effective genes under local conditions. Genotyping using twenty-five gene-specific markers across diverse genotypes and F2 progenies revealed genes Pi5 and Pi54 to be associated with leaf blast resistance in all three populations. Genes Pib and qPbm showed an association with neck blast resistance in both natural and LR 5 × SMS populations. Additionally, a set of 184 genome-wide polymorphic markers (SSRs and SNPs), when applied to F2-resistant and F2-susceptible DNA bulks derived from LR 5 × LR 26, suggested that Pi20(t) on chromosome 12 is one of the major genes imparting disease resistance. Markers snpOS318, RM1337 and RM7102 and RM247 and snpOS316 were associated with leaf blast and neck blast resistance, respectively. The genotypes, markers and genes will help in marker-assisted selection and development of varieties with durable resistance.

3.
Mol Breed ; 44(7): 49, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007057

RESUMEN

Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most serious diseases worldwide. Developing blast-resistant rice varieties is an effective strategy to control the spread of rice blast and reduce the reliance on chemical pesticides. In this study, 477 sequenced rice germplasms from 48 countries were inoculated and assessed at the booting stage. We found that 23 germplasms exhibited high panicle blast resistance against M. oryzae. Genome-wide association analysis (GWAS) identified 43 quantitative trait loci (QTLs) significantly associated (P < 1.0 × 10-4) with resistance to rice panicle blast. These QTL intervals encompass four genes (OsAKT1, OsRACK1A, Bsr-k1 and Pi25/Pid3) previously reported to contribute to rice blast resistance. We selected QTLs with -Log10 (P-value) greater than 6.0 or those detected in two-year replicates, amounting to 12 QTLs, for further candidate gene analysis. Three blast resistance candidate genes (Os06g0316800, Os06g0320000, Pi25/Pid3) were identified based on significant single nucleotide polymorphisms (SNP) distributions within annotated gene sequences across these 12 QTLs and the differential expression levels among blast-resistant varieties after 72 h of inoculation. Os06g0316800 encodes a glycine-rich protein, OsGrp6, an important component of plant cell walls involved in cellular stress responses and signaling. Os06g0320000 encodes a protein with unknown function (DUF953), part of the thioredoxin-like family, which is crucial for maintaining reactive oxygen species (ROS) homeostasis in vivo, named as OsTrxl1. Lastly, Pi25/Pid3 encodes a disease resistance protein, underscoring its potential importance in plant biology. By analyzing the haplotypes of these three genes, we identified favorable haplotypes for blast resistance, providing valuable genetic resources for future rice blast resistance breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01486-5.

4.
Rice (N Y) ; 17(1): 27, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607544

RESUMEN

Cultivating rice varieties with robust blast resistance is the most effective and economical way to manage the rice blast disease. However, rice blast disease comprises leaf and panicle blast, which are different in terms of resistance mechanisms. While many blast resistant rice cultivars were bred using genes conferring resistance to only leaf or panicle blast, mining durable and effective quantitative trait loci (QTLs) for both panicle and leaf blast resistance is of paramount importance. In this study, we conducted a pangenome-wide association study (panGWAS) on 9 blast resistance related phenotypes using 414 international diverse rice accessions from an international rice panel. This approach led to the identification of 74 QTLs associated with rice blast resistance. One notable locus, qPBR1, validated in a F4:5 population and fine-mapped in a Heterogeneous Inbred Family (HIF), exhibited broad-spectrum, major and durable blast resistance throughout the growth period. Furthermore, we performed transcriptomic analysis of 3 resistant and 3 sensitive accessions at different time points after infection, revealing 3,311 differentially expressed genes (DEGs) potentially involved in blast resistance. Integration of the above results identified 6 candidate genes within the qPBR1 locus, with no significant negative effect on yield. The results of this study provide valuable germplasm resources, QTLs, blast response genes and candidate functional genes for developing rice varieties with enduring and broad-spectrum blast resistance. The qPBR1, in particular, holds significant potential for breeding new rice varieties with comprehensive and durable resistance throughout their growth period.

5.
Planta ; 259(5): 112, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581602

RESUMEN

MAIN CONCLUSION: The three, by mutagenesis produced genes OsPi21, OsXa5, and OsBADH2, generated novel lines exhibiting desired fragrance and improved resistance. Elite sterile lines are the basis for hybrid rice breeding, and rice quality and disease resistance become the focus of new sterile lines breeding. Since there are few sterile lines with fragrance and high resistance to blast and bacterial blight at the same time in hybrid rice production, we here integrated the simultaneous mutagenesis of three genes, OsPi21, OsXa5, and OsBADH2, into Zhi 5012S, an elite thermo-sensitive genic male sterile (TGMS) variety, using the CRISPR/Cas9 system, thus eventually generated novel sterile lines would exhibit desired popcorn-like fragrance and improved resistance to blast and bacterial blight but without a loss in major agricultural traits such as yield. Collectively, this study develops valuable germplasm resources for the development of two-line hybrid rice with disease resistance, which provides a way to rapid generation of novel TGMS lines with elite traits.


Asunto(s)
Sistemas CRISPR-Cas , Oryza , Oryza/genética , Resistencia a la Enfermedad/genética , Odorantes , Temperatura , Fitomejoramiento
6.
Heliyon ; 10(5): e27236, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486763

RESUMEN

Researchers have extensively explored various approaches to enhance the blast resistance of structures, concentrating on optimizing structural designs and employing a wide range of materials. This research investigates the impact of incorporating water as a fluid within the core of tubular sandwich panels on blast mitigation effectiveness. The study systematically analyzes various panel configurations by altering key design parameters: the thickness of the face sheets, spacing between the core elements, and proportion of fluid within the core. These variables are scrutinized through metrics such as elastic strain energy, the amount of work applied externally, and the movement of the panel. Utilizing finite element analysis, 27 distinct numerical experiments were conducted to gather data. The findings demonstrate that panels with a water-filled core exhibit superior blast resistance compared to their non-fluid counterparts. Specifically, panels with completely filled cores showed the lowest levels of panel displacement and external work, whereas those with half-filled cores recorded the highest elastic strain energy. Furthermore, regression analysis revealed that plate thickness predominantly influences panel displacement and external work, whereas the fluid volume fraction within the core most significantly affects elastic strain energy. This study contributes to the understanding of fluid-structure interactions in blast-resistant design, offering valuable insights for optimizing structural defenses against blast impacts.

7.
Heliyon ; 10(4): e25327, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38380045

RESUMEN

The study aimed to assess the impact of different combinations of cultivar mixtures on finger millet blast epidemics without affecting yield. The research employed Disease Progress Curves (DPCs) such as AUDPC, rAUDPC, and sAUDPC to evaluate leaf, neck and finger blast epidemics' severity at various time intervals. Treatments involved mixtures of pre-released cultures and commercial varieties, combined with resistant cultivars in ratios of 1:1 and 2:1 to combat blast disease. These mixtures were compared with monoculture performances (resistant and susceptible checks) and fungicide treatments. The mixture of pre-released cultures (TNEc 1285 + TNEc 1294 + TNEc 1310) combined with the resistant cultivar GE4449 at a 1:1 ratio demonstrated the most significant impact in reducing the Area Under Disease Progressive Curve (AUDPC) values for all three blast types while maintaining consistent yield. This treatment exhibited results comparable to fungicide (Tricyclazole 75% WP) sprays across trials conducted from September to December in both 2020 and 2021. Economically, the cost-benefit ratio favoured the culture composite despite its delayed onset and slower progression during disease epidemics under field conditions. The mixture of cultures demonstrated sustainable yield without requiring significant additional input costs or frequent fungicidal application in both trial periods. This suggests a promising and cost-effective approach to managing finger millet blast epidemics while maintaining yield stability in agricultural practices.

8.
J Appl Genet ; 65(2): 241-254, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38191812

RESUMEN

Pigmentation in rice grains is an important quality parameter. Purple-coloured rice (Oryza sativa L.) indicates the presence of high anthocyanin with benefits of antioxidant properties. However, the genetic mechanism of grain colour is not fully understood. Therefore, the study focused on understanding pigmentation in grain pericarp and vegetative parts, and its relationship with blast resistance and enhanced grain yield. Three local cultivars from the northeastern region (NER) of India - Chakhao Poireiton (purple), Mang Meikri (light brown), and Kala Joha (white) - along with high-yielding varieties (HYVs) Shasharang (light brown) and Sahbhagi dhan (white) were used to develop biparental populations. The findings suggested that pigmentation in vegetative tissue was governed by the inter-allelic interaction of several genes. Haplotype analysis revealed that Kala3 complemented Kala4 in enhancing purple pigmentation and that Kala4 is not the only gene responsible for purple colour as evident by the presence of a desired allele for markers RID3 and RID4 (Kala4 locus) in Chakhao Poireiton and Kala Joha irrespective of their pericarp colour, implying the involvement of some other additional, unidentified genes/loci. RID3 and RID4 together with RM15191 (Kala3 locus) could be employed as a reliable marker set for marker-assisted selection (MAS). Pericarp colour was strongly correlated with colour in different vegetative parts, but showed a negative correlation with grain yield. Pb1, reported to be associated with panicle blast resistance, contributed to leaf blast resistance. Transgressive segregants for improved pigmentation and high yield were identified. The selection of lines exhibiting coloured pericarp, high anthocyanin content, aroma, blast resistance, and increased yield compared to their respective HYV parents will be valuable resources in the rice breeding programme.


Asunto(s)
Oryza , Oryza/genética , Antocianinas/genética , Fitomejoramiento , Pigmentación/genética , Semillas/genética , Grano Comestible
9.
Plant Biotechnol J ; 22(6): 1740-1756, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38294722

RESUMEN

Rice blast, caused by Magnaporthe oryzae, significantly impacts grain yield, necessitating the identification of broad-spectrum resistance genes and their functional mechanisms for disease-resistant crop breeding. Here, we report that rice with knockdown OsHDAC1 gene expression displays enhanced broad-spectrum blast resistance without effects on plant height and tiller numbers compared to wild-type rice, while rice overexpressing OsHDAC1 is more susceptible to M. oryzae. We identify a novel blast resistance transcription factor, OsGRAS30, which genetically acts upstream of OsHDAC1 and interacts with OsHDAC1 to suppress its enzymatic activity. This inhibition increases the histone H3K27ac level, thereby boosting broad-spectrum blast resistance. Integrating genome-wide mapping of OsHDAC1 and H3K27ac targets with RNA sequencing analysis unveils how OsHDAC1 mediates the expression of OsSSI2, OsF3H, OsRLR1 and OsRGA5 to regulate blast resistance. Our findings reveal that the OsGRAS30-OsHDAC1 module is critical to rice blast control. Therefore, targeting either OsHDAC1 or OsGRAS30 offers a promising approach for enhancing crop blast resistance.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Oryza/genética , Oryza/microbiología , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Resistencia a la Enfermedad/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Regulación de la Expresión Génica de las Plantas , Magnaporthe/fisiología , Ascomicetos
10.
Plant Biotechnol J ; 22(2): 363-378, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37794842

RESUMEN

Brassinosteroids (BRs) play a crucial role in shaping the architecture of rice (Oryza sativa) plants. However, the regulatory mechanism of BR signalling in rice immunity remains largely unexplored. Here we identify a rice mutant dla, which exhibits decreased leaf angles and is insensitive to 24-epiBL (a highly active synthetic BR), resembling the BR-deficient phenotype. The dla mutation caused by a T-DNA insertion in the OsDLA gene leads to downregulation of the causative gene. The OsDLA knockout plants display reduced leaf angles and less sensitivity to 24-epiBL. In addition, both dla mutant and OsDLA knockout plants are more susceptible to rice blast compared to the wild type. OsDLA is a GRAS transcription factor and interacts with the BR signalling core negative regulator, GSK2. GSK2 phosphorylates OsDLA for degradation via the 26S proteasome. The GSK2 RNAi line exhibits enhanced rice blast resistance, while the overexpression lines thereof show susceptibility to rice blast. Furthermore, we show that OsDLA interacts with and stabilizes the WRKY transcription factor OsWRKY53, which has been demonstrated to positively regulate BR signalling and blast resistance. OsWRKY53 directly binds the promoter of PBZ1 and activates its expression, and this activation can be enhanced by OsDLA. Together, our findings unravel a novel mechanism whereby the GSK2-OsDLA-OsWRKY53 module coordinates blast resistance and plant architecture via BR signalling in rice.


Asunto(s)
Brasinoesteroides , Oryza , Brasinoesteroides/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción de Señal/genética , Regiones Promotoras Genéticas , Oryza/genética , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
11.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833893

RESUMEN

Rice blast caused by Magnaporthe oryzae is one of the most serious rice diseases worldwide. The early indica rice thermosensitive genic male sterile (TGMS) line HD9802S has the characteristics of stable fertility, reproducibility, a high outcrossing rate, excellent rice quality, and strong combining ability. However, this line exhibits poor blast resistance and is highly susceptible to leaf and neck blasts. In this study, backcross introduction, molecular marker-assisted selection, gene chipping, anther culture, and resistance identification in the field were used to introduce the broad-spectrum blast-resistance gene R6 into HD9802S to improve its rice blast resistance. Six induction media were prepared by varying the content of each component in the culture medium. Murashige and Skoog's medium with 3 mg/L 2,4-dichlorophenoxyacetic acid, 2 mg/L 1-naphthaleneacetic acid, and 1 mg/L kinetin and N6 medium with 800 mg/L casein hydrolysate, 600 mg/L proline, and 500 mg/L glutamine could improve the callus induction rate and have a higher green seedling rate and a lower white seedling rate. Compared to HD9802S, two doubled haploid lines containing R6 with stable fertility showed significantly enhanced resistance to rice blast and no significant difference in spikelet number per panicle, 1000-grain weight, or grain shape. Our findings highlight a rapid and effective method for improving rice blast resistance in TGMS lines.


Asunto(s)
Herbicidas , Oryza , Reproducibilidad de los Resultados , Cinetina , Biomarcadores , Genes de Plantas , Oryza/genética
12.
Int J Biol Macromol ; 253(Pt 2): 126728, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37678689

RESUMEN

Mediator, a universal eukaryotic coactivator, is a multiprotein complex to transduce information from the DNA-bound transcription factors to the RNA polymerase II transcriptional machinery. In this study, the biofunctions of a rice mediator subunit OsMED16 in leaf development and blast resistance were characterized. OsMED16 encodes a putative protein of 1170 amino acids, which is 393 bp shorted than the version in Rice Genome Annotation Project databases. Overexpression of OsMED16 plants exhibited wider leaves with larger and more numerous cells in lateral axis, and enhanced resistance to M. oryzae with hyperaccumulated salicylic acid. Further analysis revealed that OsMED16 interacts with OsE2Fa in nuclei, and the complex could directly regulate the transcriptional levels of several genes involved in cell cycle regulation and SA mediated blast resistance, such as OsCC52A1, OsCDKA1, OsCDKB2;2, OsICS1 and OsWRKY45. Altogether, this study proved that OsMED16 is a positive regulator of rice leaf development and blast resistance, and providing new insights into the crosstalk between cell cycle regulation and immunity.


Asunto(s)
Magnaporthe , Oryza , Oryza/metabolismo , Magnaporthe/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejo Mediador/genética , Complejo Mediador/metabolismo , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
13.
Appl Microbiol Biotechnol ; 107(22): 6911-6922, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37704771

RESUMEN

The Food and Agriculture Organization of the United Nations (FAO) has identified hybrid rice as ideal for addressing food scarcity in poor nations. A comprehensive investigation of the endophytic bacteria in hybrid rice seeds is essential from a microecological perspective to illuminate the mechanisms underlying its high yield, high quality, and multi-resistance. The endophytic bacterial diversity and community structures of 11 genetically correlated hybrid rice seeds with different rice blast resistance levels were studied using high-throughput sequencing (HTS) on the Illumina MiSeq platform to reveal their "core microbiota" and explore the effect of genotypes, genetic relationships, and resistance. Proteobacteria (78.15-99.15%) represented the most abundant group in the 11 hybrid rice cultivars, while Pantoea, Pseudomonas, and Microbacterium comprised the "core microbiota." Hybrid rice seeds with different genotypes, genetic correlations, and rice blast resistance displayed endophytic bacterial community structure and diversity variation. In addition, the network relationships between the rice seed endophytic bacteria of "the same female parent but different male parents" were more complex than those from "the same male parent but different female parents." Matrilineal inheritance may be the primary method of passing on endophytic bacteria in rice from generation to generation. The endophytic bacterial interaction network in rice blast-resistant hybrid rice seed varieties was more complicated than in susceptible varieties. In summary, this study demonstrated that the genotype, genetic relationship, and rice blast resistance were important factors affecting the community structures and diversity of endophytic bacteria in hybrid rice seeds, which was vital for revealing the interaction between endophytic bacteria and the host. KEY POINTS: • Pantoea, Pseudomonas, and Microbacterium represent the main endophytic bacteria in hybrid rice seeds. • Genotype is the primary factor affecting endophytic bacterial diversity in hybrid rice seeds. • The diversity of the endophytic bacterial community in hybrid rice seeds is related to their genotypes, genetic relationships, and rice blast resistance.

14.
Materials (Basel) ; 16(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37297203

RESUMEN

Reinforcement is one of the important factors affecting the anti-blast performance of reinforced concrete (RC) slabs. In order to study the impact of different reinforcement distribution and different blast distances on the anti-blast performance of RC slabs, 16 model tests were carried out for RC slab members with the same reinforcement ratio but different reinforcement distribution and the same proportional blast distance but different blast distances. By comparing the failure patterns of RC slabs and the sensor test data, the impact of reinforcement distribution and blast distance on the dynamic response of RC slabs was analyzed. The results show that, under contact explosion and non-contact explosion, the damage degree of single-layer reinforced slabs is more serious than that of double-layer reinforced slabs. When the scale distance is the same, with the increase of distance, the damage degree of single-layer reinforced slabs and double-layer reinforced slabs increases first and then decreases, and the peak displacement, rebound displacement and residual deformation near the center of the bottom of RC slabs gradually increase. When the blast distance is small, the peak displacement of single-layer reinforced slabs is smaller than that of double-layer reinforced slabs. When the blast distance is large, the peak displacement of double-layer reinforced slabs is smaller than that of single-layer reinforced slabs. No matter how large the blast distance, the rebound peak displacement of the double-layer reinforced slabs is smaller, and the residual displacement is larger. The research in this paper provides a reference for the anti-explosion design, construction and protection of RC slabs.

15.
Mol Biol Rep ; 50(7): 5901-5915, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37245171

RESUMEN

BACKGROUND: Kashmir valley, India is a homeland to rice landraces like Zag, Nunbeoul, Qadirbeigh, Kawkadur, Kamad, Mushk Budji, etc., generally characterized by short grains, aroma, earliness and cold tolerance. Mushk Budji is a commercially important speciality rice known for its taste and aroma, nonetheless, is extremely vulnerable to blast disease. Through the use of the marker-assisted backcrossing (MABC) approach, a set of 24 Near-isogenic lines (NILs) was created, and the lines with the highest background genome recovery were chosen. The expression analysis was carried out for the component genes and other eight pathway genes related to blast resistance. RESULTS: The major blast resistance genes Pi9 (from IRBL-9W) and Pi54 (from DHMAS 70Q 164-1b) were incorporated following simultaneous-but-step-wise MABC. The NILs harbouring genes Pi9 + Pi54, Pi9 and Pi54 expressed resistance to isolate (Mo-nwi-kash-32) under controlled and natural field conditions. The loci controlling ETI (effector triggered immunity) included the gene Pi9 and showed 61.18 and 60.27 fold change in relative gene expression in Pi54 + Pi9 and Pi9 carrying NILs against RP Mushk Budji. Pi54 was up regulated and showed 41 and 21 fold change in relative gene expression for NIL-Pi54 + Pi9 and NIL-Pi54, respectively. Among the pathway genes, LOC_Os01g60600 (WRKY 108) recorded 8 and 7.5 fold up regulation in Pi9 and Pi54 NILs. CONCLUSION: The NILs showed recurrent parent genome recovery (RPG) per cent of 81.67 to 92.54 and were on par in performance to recurrent parent Mushk Budji. The lines were utilized to study the expression of the loci controlling WRKYs, peroxidases and chitinases that confer overall ETI response.


Asunto(s)
Genes de Plantas , Oryza , Genes de Plantas/genética , Oryza/genética , Resistencia a la Enfermedad/genética , Expresión Génica , India , Enfermedades de las Plantas/genética
16.
Plant Biotechnol J ; 21(8): 1628-1641, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154202

RESUMEN

Traditional rice blast resistance breeding largely depends on utilizing typical resistance (R) genes. However, the lack of durable R genes has prompted rice breeders to find new resistance resources. Susceptibility (S) genes are potential new targets for resistance genetic engineering using genome-editing technologies, but identifying them is still challenging. Here, through the integration of genome-wide association study (GWAS) and transcriptional analysis, we identified two genes, RNG1 and RNG3, whose polymorphisms in 3'-untranslated regions (3'-UTR) affected their expression variations. These polymorphisms could serve as molecular markers to identify rice blast-resistant accessions. Editing the 3'-UTRs using CRISPR/Cas9 technology affected the expression levels of two genes, which were positively associated with rice blast susceptibility. Knocking out either RNG1 or RNG3 in rice enhanced the rice blast and bacterial blight resistance, without impacting critical agronomic traits. RNG1 and RNG3 have two major genotypes in diverse rice germplasms. The frequency of the resistance genotype of these two genes significantly increased from landrace rice to modern cultivars. The obvious selective sweep flanking RNG3 suggested it has been artificially selected in modern rice breeding. These results provide new targets for S gene identification and open avenues for developing novel rice blast-resistant materials.


Asunto(s)
Genes de Plantas , Oryza , Oryza/genética , Oryza/microbiología , Estudio de Asociación del Genoma Completo , Edición Génica , Resistencia a la Enfermedad/genética , Fitomejoramiento
18.
Plants (Basel) ; 12(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36987076

RESUMEN

Rice blast caused by pathogenic fungus Magnaporthe oryzae is one of the most serious diseases in rice. The pyramiding of effective resistance genes into rice varieties is a potential approach to reduce the damage of blast disease. In this study, combinations of three resistance genes, Pigm, Pi48 and Pi49, were introduced into a thermo-sensitive genic male sterile (PTGMS) line Chuang5S through marker-assisted selection. The results showed that the blast resistance of improved lines increased significantly compared with Chuang5S, and the three gene pyramiding lines (Pigm + Pi48 + Pi49) had higher rice blast resistance level than monogenic line and digenic lines (Pigm +Pi48, Pigm + Pi49). The genetic backgrounds of the improved lines were highly similar (>90%) to the recurrent parent Chuang5S by using the RICE10K SNP chip. In addition, agronomic traits evaluation also showed pyramiding lines with two or three genes similar to Chuang5S. The yields of the hybrids developed from improved PTGMS lines and Chuang5S are not significantly different. The newly developed PTGMS lines can be practically used for the breeding of parental lines and hybrid varieties with broad spectrum blast resistance.

19.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835399

RESUMEN

Rice blast, caused by the Magnaporthe oryzae fungus, is one of the most devastating rice diseases worldwide. Developing resistant varieties by pyramiding different blast resistance (R) genes is an effective approach to control the disease. However, due to complex interactions among R genes and crop genetic backgrounds, different R-gene combinations may have varying effects on resistance. Here, we report the identification of two core R-gene combinations that will benefit the improvement of Geng (Japonica) rice blast resistance. We first evaluated 68 Geng rice cultivars at seedling stage by challenging with 58 M. oryzae isolates. To evaluate panicle blast resistance, we inoculated 190 Geng rice cultivars at boosting stage with five groups of mixed conidial suspensions (MCSs), with each containing 5-6 isolates. More than 60% cultivars displayed moderate or lower levels of susceptibility to panicle blast against the five MCSs. Most cultivars contained two to six R genes detected by the functional markers corresponding to 18 known R genes. Through multinomial logistics regression analysis, we found that Pi-zt, Pita, Pi3/5/I, and Pikh loci contributed significantly to seedling blast resistance, and Pita, Pi3/5/i, Pia, and Pit contributed significantly to panicle blast resistance. For gene combinations, Pita+Pi3/5/i and Pita+Pia yielded more stable pyramiding effects on panicle blast resistance against all five MCSs and were designated as core R-gene combinations. Up to 51.6% Geng cultivars in the Jiangsu area contained Pita, but less than 30% harbored either Pia or Pi3/5/i, leading to less cultivars containing Pita+Pia (15.8%) or Pita+Pi3/5/i (5.8%). Only a few varieties simultaneously contained Pia and Pi3/5/i, implying the opportunity to use hybrid breeding procedures to efficiently generate varieties with either Pita+Pia or Pita+Pi3/5/i. This study provides valuable information for breeders to develop Geng rice cultivars with high resistance to blast, especially panicle blast.


Asunto(s)
Magnaporthe , Oryza , Magnaporthe/genética , Genes prv , Oryza/genética , Enfermedades de las Plantas/microbiología , Fitomejoramiento , Resistencia a la Enfermedad/genética
20.
Phytopathology ; 113(7): 1278-1288, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36802875

RESUMEN

There is a recent unparalleled increase in demand for rice in sub-Saharan Africa, yet its production is affected by blast disease. Characterization of blast resistance in adapted African rice cultivars can provide important information to guide growers and rice breeders. We used molecular markers for known blast resistance genes (Pi genes; n = 21) to group African rice genotypes (n = 240) into similarity clusters. We then used greenhouse-based assays to challenge representative rice genotypes (n = 56) with African isolates (n = 8) of Magnaporthe oryzae which varied in virulence and genetic lineage. The markers grouped rice cultivars into five blast resistance clusters (BRC) which differed in foliar disease severity. Using stepwise regression, we found that the Pi genes associated with reduced blast severity were Pi50 and Pi65, whereas Pik-p, Piz-t, and Pik were associated with increased susceptibility. All rice genotypes in the most resistant cluster, BRC 4, possessed Pi50 and Pi65, the only genes that were significantly associated with reduced foliar blast severity. Cultivar IRAT109, which contains Piz-t, was resistant against seven African M. oryzae isolates, whereas ARICA 17 was susceptible to eight isolates. The popular Basmati 217 and Basmati 370 were among the most susceptible genotypes. These findings indicate that most tested genes were not effective against African blast pathogen collections. Pyramiding genes in the Pi2/9 multifamily blast resistance cluster on chromosome 6 and Pi65 on chromosome 11 could confer broad-spectrum resistance capabilities. To gain further insights into genomic regions associated with blast resistance, gene mapping could be conducted with resident blast pathogen collections. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Magnaporthe , Oryza , Oryza/genética , Magnaporthe/genética , Enfermedades de las Plantas/genética , África del Sur del Sahara , Mapeo Cromosómico , Resistencia a la Enfermedad/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA