Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 15(5): e0341423, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38572988

RESUMEN

Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear. Here, we identify two BC isoforms (BC1 and BC2) from Chloroflexus aurantiacus, a filamentous anoxygenic phototroph that employs 3-hydroxypropionate (3-HP) bi-cycle rather than Calvin cycle for autotrophic carbon fixation. We reveal that BC1 possesses fused BC and BCCP domains, where BCCP could be biotinylated by E. coli or C. aurantiacus BirA on Lys553 residue. Crystal structures of BC1 and BC2 at 3.2 Å and 3.0 Å resolutions, respectively, further reveal a tetramer of two BC1-BC homodimers, and a BC2 homodimer, all exhibiting similar BC architectures. The two BC1-BC homodimers are connected by an eight-stranded ß-barrel of the partially resolved BCCP domain. Disruption of ß-barrel results in dissociation of the tetramer into dimers in solution and decreased biotin carboxylase activity. Biotinylation of the BCCP domain further promotes BC1 and CTß-CTα interactions to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-HP via co-expression with a recombinant malonyl-CoA reductase in E. coli cells. This study revealed a heteromeric ACC that evolves fused BC-BCCP but separate CTα and CTß to complete ACC activity.IMPORTANCEAcetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in fatty acid biosynthesis and autotrophic carbon fixation pathways across a wide range of organisms, making them attractive targets for drug discovery against various infections and diseases. Although structural studies on homomeric ACCs, which consist of a single protein with three subunits, have revealed the "swing domain model" where the biotin carboxyl carrier protein (BCCP) domain translocates between biotin carboxylase (BC) and carboxyltransferase (CT) active sites to facilitate the reaction, our understanding of the subunit composition and catalytic mechanism in heteromeric ACCs remains limited. Here, we identify a novel ACC from an ancient anoxygenic photosynthetic bacterium Chloroflexus aurantiacus, it evolves fused BC and BCCP domain, but separate CT components to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-hydroxypropionate (3-HP) via co-expression with recombinant malonyl-CoA reductase in E. coli cells. These findings expand the diversity and molecular evolution of heteromeric ACCs and provide a structural basis for potential applications in 3-HP biosynthesis.


Asunto(s)
Acetil-CoA Carboxilasa , Ligasas de Carbono-Nitrógeno , Chloroflexus , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/química , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/química , Chloroflexus/genética , Chloroflexus/metabolismo , Chloroflexus/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Biotina/metabolismo , Biotina/biosíntesis , Malonil Coenzima A/metabolismo , Acetilcoenzima A/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Acido Graso Sintasa Tipo II
2.
J Agric Food Chem ; 69(40): 11912-11918, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34586795

RESUMEN

Metabolic engineering of non-photosynthetic microorganisms to increase the utilization of CO2 has been focused on as a green strategy to convert CO2 into valuable products such as fatty acids. In this study, a CO2 utilization pathway involving carbonic anhydrase and biotin carboxylase was formed to recycle CO2 in the oleaginous yeast Yarrowia lipolytica, thereby increasing the production of fatty acids. In the recombinant strain in which the CO2 utilization pathway was introduced, the production of fatty acids was 10.7 g/L, which was 1.5-fold higher than that of the wild-type strain. The resulting strain had a 1.4-fold increase in dry cell mass compared to the wild-type strain. In addition, linoleic acid was 47.7% in the fatty acid composition of the final strain, which was increased by 11.6% compared to the wild-type strain. These results can be applied as an essential technology for developing efficient and eco-friendly processes by directly utilizing CO2.


Asunto(s)
Yarrowia , Dióxido de Carbono , Ácidos Grasos , Ingeniería Metabólica , Yarrowia/genética
3.
Hum Mutat ; 40(6): 816-827, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30870574

RESUMEN

Pyruvate carboxylase deficiency (PCD) is caused by biallelic mutations of the PC gene. The reported clinical spectrum includes a neonatal form with early death (type B), an infantile fatal form (type A), and a late-onset form with isolated mild intellectual delay (type C). Apart from homozygous stop-codon mutations leading to type B PCD, a genotype-phenotype correlation has not otherwise been discernible. Indeed, patients harboring biallelic heterozygous variants leading to PC activity near zero can present either with a fatal infantile type A or with a benign late onset type C form. In this study, we analyzed six novel patients with type A (three) and type C (three) PCD, and compared them with previously reported cases. First, we observed that type C PCD is not associated to homozygous variants in PC. In silico modeling was used to map former and novel variants associated to type A and C PCD, and to predict their potential effects on the enzyme structure and function. We found that variants lead to type A or type C phenotype based on the destabilization between the two major enzyme conformers. In general, our study on novel and previously reported patients improves the overall understanding on type A and C PCD.


Asunto(s)
Mutación , Enfermedad por Deficiencia de Piruvato Carboxilasa/genética , Piruvato Carboxilasa/química , Piruvato Carboxilasa/genética , Niño , Preescolar , Estabilidad de Enzimas , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Modelos Moleculares , Conformación Proteica , Enfermedad por Deficiencia de Piruvato Carboxilasa/clasificación , Homología Estructural de Proteína
4.
ACS Synth Biol ; 8(2): 251-256, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30702274

RESUMEN

The antisense RNA (asRNA) strategy is commonly used to block protein expression and downregulate the contents of metabolites in several microorganisms. Here, we show that the asRNA strategy can also be used to block gfp expression in Bacillus subtilis TS1726, which could further be utilized in the identification of new genes and functions. Via application of this strategy, biotin carboxylase II encoded by yngH (GeneID 939474) was identified to play a more significant role in maintaining acetyl-CoA carboxylase (ACCase) activity and enhancing surfactin synthesis compared to those of other ACCase subunits. The yngH gene was then overexpressed in the engineered strain B. subtilis TS1726(yngH). The surfactin titer of TS1726(yngH) increased to 13.37 g/L in a flask culture, representing a 43% increase compared to that of parental strain TS1726. This strategy opens the door to achieving large-scale production and broad application of surfactin.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Bacillus subtilis/genética , Ligasas de Carbono-Nitrógeno/metabolismo , ARN sin Sentido/genética , Acetil-CoA Carboxilasa/genética , Biotina/genética , Biotina/metabolismo , Ligasas de Carbono-Nitrógeno/genética
5.
J Comput Aided Mol Des ; 32(4): 547-557, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29464467

RESUMEN

Acetyl-coenzyme A carboxylases (ACCs) is the first committed enzyme of fatty acid synthesis pathway. The inhibition of ACC is thought to be beneficial not only for diseases related to metabolism, such as type-2 diabetes, but also for infectious disease like bacterial infection disease. Soraphen A, a potent allosteric inhibitor of BC domain of yeast ACC, exhibit lower binding affinities to several yeast ACC mutants and the corresponding drug resistance mechanisms are still unknown. We report here a theoretical study of binding of soraphen A to wild type and yeast ACC mutants (including F510I, N485G, I69E, E477R, and K73R) via molecular dynamic simulation and molecular mechanics/generalized Born surface area free energy calculations methods. The calculated binding free energies of soraphen A to yeast ACC mutants are weaker than to wild type, which is highly consistent with the experimental results. The mutant F510I weakens the binding affinity of soraphen A to yeast ACC mainly by decreasing the van der Waals contributions, while the weaker binding affinities of Soraphen A to other yeast ACC mutants including N485G, I69E, E477R, and K73R are largely attributed to the decreased net electrostatic (ΔEele + ΔGGB) interactions. Our simulation results could provide important insights for the development of more potent ACC inhibitors.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/metabolismo , Macrólidos/metabolismo , Simulación de Dinámica Molecular , Resistencia a Medicamentos , Estructura Molecular , Mutación , Unión Proteica , Saccharomyces cerevisiae/química , Electricidad Estática , Termodinámica
6.
Arch Biochem Biophys ; 636: 100-109, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29100983

RESUMEN

Acetyl-CoA carboxylase (ACC) in bacteria is composed of three components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. ACC catalyzes the first committed step in fatty acid synthesis: the carboxylation of acetyl-CoA to form malonyl-CoA via a two-step reaction. In the first half-reaction, biotin carboxylase catalyzes the ATP-dependent carboxylation of the vitamin biotin covalently linked to biotin carboxyl carrier protein. In the second half-reaction, the carboxyl group is transferred from biotin to acetyl-CoA by the enzyme carboxyltransferase, to form malonyl-CoA. In most Gram-negative and Gram-positive bacteria, the three components of ACC form a complex that requires communication for catalysis, and is subject to feedback inhibition by acylated-acyl carrier proteins. This study investigated the mechanism of inhibition of palmitoyl-acyl carrier protein (PACP) on ACC. Unexpectedly, ACC was found to exhibit a significant hysteresis, meaning ACC was subject to inhibition by PACP in a time dependent manner. Pull-down assays demonstrated PACP does not prevent formation of the multiprotein complex, while steady-state kinetic analyses showed PACP inhibited ACC activity allosterically. Structure-activity analyses revealed that the pantothenic acid moiety of PACP is responsible for the inhibition of ACC. This study provides the first evidence of the hysteretic nature of ACC.


Asunto(s)
Acetil-CoA Carboxilasa/química , Proteína Transportadora de Acilo/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Regulación Alostérica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
7.
Adv Protein Chem Struct Biol ; 109: 161-194, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28683917

RESUMEN

Biotin-dependent carboxylases are widely distributed in nature and have central roles in the metabolism of fatty acids, amino acids, carbohydrates, and other compounds. The last decade has seen the accumulation of structural information on most of these large holoenzymes, including the 500-kDa dimeric yeast acetyl-CoA carboxylase, the 750-kDa α6ß6 dodecameric bacterial propionyl-CoA carboxylase, 3-methylcrotonyl-CoA carboxylase, and geranyl-CoA carboxylase, the 720-kDa hexameric bacterial long-chain acyl-CoA carboxylase, the 500-kDa tetrameric bacterial single-chain pyruvate carboxylase, the 370-kDa α2ß4 bacterial two-subunit pyruvate carboxylase, and the 130-kDa monomeric eukaryotic urea carboxylase. A common theme that has emerged from these studies is the dramatic structural flexibility of these holoenzymes despite their strong overall sequence conservation, evidenced both by the extensive diversity in the architectures of the holoenzymes and by the extensive conformational variability of their domains and subunits. This structural flexibility is crucial for the function and regulation of these enzymes and identifying compounds that can interfere with it represents an attractive approach for developing novel modulators and drugs. The extensive diversity observed in the structures so far and its biochemical and functional implications will be the focus of this review.


Asunto(s)
Bacterias/enzimología , Biotina/metabolismo , Ligasas de Carbono-Carbono/química , Ligasas de Carbono-Carbono/metabolismo , Hongos/enzimología , Animales , Bacterias/química , Bacterias/metabolismo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/metabolismo , Descubrimiento de Drogas , Hongos/química , Hongos/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Piruvato Carboxilasa/química , Piruvato Carboxilasa/metabolismo
8.
Biochem Biophys Res Commun ; 441(2): 377-82, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24157795

RESUMEN

Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates.


Asunto(s)
Transferasas de Carboxilo y Carbamoilo/química , Proteínas de Plantas/química , Piruvato Carboxilasa/química , Rhizobium etli/enzimología , Transferasas de Carboxilo y Carbamoilo/antagonistas & inhibidores , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Oxalatos/química , Estructura Terciaria de Proteína , Piruvato Carboxilasa/antagonistas & inhibidores , Piruvatos/química , Especificidad por Sustrato
9.
J Biochem ; 154(3): 291-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23760555

RESUMEN

The enzyme 3-methylcrotonyl-CoA carboxylase from Pseudomonas aeruginosa (Pa-MCCase) is essential for the assimilation of leucine and acyclic monoterpenes. The structure of the Pa-MCCase was analysed by computational modelling to establish the molecular basis of substrate recognition. The active site is composed of two zones, which may play important roles in substrate recognition and catalysis. To further understand the interactions of the active site with the substrate, site-directed mutagenesis of the conserved residues S187 and R51 located in zone I, and F417, Y422 and G423 from zone II of the Pa-MCCase was carried out. The residue substitutions S187A and Y422D completely abolished the Pa-MCCase activity, whereas substitutions R51A, F417Y and G423A indicated that these residues are not essential. Interestingly, the residues R47, R51 and S187 form a well-defined pocket that may play important roles in substrate coupling to the Co-A motif. At zone one, mutation S187A was essential, but mutant R51A retained activity, suggesting that the R51 function could be relegated to neighbouring positive residues. Residue Y422 instead of contributing to substrate discrimination, it may participate in deprotonation of methyl group on MC-CoA, because it is located at adequate distances from the 3-methylcrotonyl-chain and carboxybiotin groups in the Pa-MCCase carboxylation site.


Asunto(s)
Proteínas Bacterianas/química , Ligasas de Carbono-Carbono/química , Pseudomonas aeruginosa/química , Serina/química , Tirosina/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Ligasas de Carbono-Carbono/genética , Dominio Catalítico , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pseudomonas aeruginosa/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato
10.
Planta ; 198(4): 517-525, 1996 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28321661

RESUMEN

Acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) is a regulatory enzyme of fatty acid synthesis, and in some higher-plant plastids is a multi-subunit complex consisting of biotin carboxylase (BC), biotin-carboxyl carrier protein (BCCP), and carboxyl transferase (CT). We recently described a Nicotiana tabacum L. (tobacco) cDNA with a deduced amino acid sequence similar to that of prokaryotic BC. We here provide further biochemical and immunological evidence that this higher-plant polypeptide is an authentic BC component of ACCase. The BC protein co-purified with ACCase activity and with BCCP during gel permeation chromatography of Pisum sativum L. (pea) chloroplast proteins. Antibodies to the Ricinus communis L. (castor) BC co-precipitated ACCase activity and BCCP. During castor seed development, ACCase activity and the levels of BC and BCCP increased and subsequently decreased in parallel, indicating their coordinate regulation. The BC protein comprised about 0.8% of the soluble protein in developing castor seed, and less than 0.05% of the protein in young leaf or root. Polypeptides cross-reacting with antibodies to castor BC were detected in several dicotyledons and in the monocotyledons Hemerocallis fulva L. (day lily), Iris L., and Allium cepa L. (onion), but not in the Gramineae species Hordeum vulgare L. (barley) and Panicum virgatum L. (switchgrass). The castor endosperm and pea chloroplast ACCases were not significantly inhibited by long-chain acyl-acyl carrier protein, free fatty acids or acyl carrier protein. The BC polypeptide was detected throughout Brassica napus L. (rapeseed) embryo development, in contrast to the multi-functional ACCase isoenzyme which was only detected early in development. These results firmly establish the identity of the BC polypeptide in plants and provide insight into the structure, regulation and roles of higherplant ACCases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA