Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Plant Divers ; 46(5): 640-647, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39290889

RESUMEN

Alien plant invasion success can be inhibited by two key biotic factors: native herbivores and plant diversity. However, few studies have experimentally tested whether these factors interact to synergistically resist invasion success, especially factoring in changing global environments (e.g. nutrient enrichment). Here we tested how the synergy between native herbivores and plant diversity affects alien plant invasion success in various nutrient conditions. For this purpose, we exposed alien plant species in pot-mesocosms to different levels of native plant diversity (4 vs. 8 species), native generalist herbivores, and high and low soil nutrient levels. We found that generalist herbivores preferred alien plants to native plants, inhibiting invasion success in a native community. This inhibition was amplified by highly diverse native communities. Further, the amplified effect between herbivory and native plant diversity was independent of nutrient conditions. Our results suggest that a higher diversity of native communities can strengthen the resistance of native generalist herbivores to alien plant invasions by enhancing herbivory tolerance. The synergistic effect remains in force in nutrient-enriched habitats that are always invaded by alien plant species. Our results shed light on the effective control of plant invasions using multi-trophic means, even in the face of future global changes.

2.
Am J Bot ; 111(7): e16362, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38943238

RESUMEN

PREMISE: Theory predicts and empirical studies have shown that ecologically manipulated communities with high species diversity are resistant to invasion, but do these predictions and results hold true when applied to highly competitive invaders in natural communities? Few studies of diversity-mediated invasion resistance have measured both invasion resistance and invader impact in the same study. METHODS: We used a two-year field experiment to test: (1) diversity-mediated competitive resistance to patch expansion by the grass, Microstegium vimineum; and (2) the competitive effect of M. vimineum on resident plant diversity. We examined responses of M. vimineum to two native plant density-reduction treatments that had opposite effects on species diversity: (1) reducing species richness via the removal of rare species; and (2) reducing dominance by reducing the density of the dominant resident species. We examined the effects of M. vimineum reduction by pre-emergent herbicide on resident diversity in the second year of the study. RESULTS: Neither rare species removal nor dominant species reduction significantly increased M. vimineum density (relative growth rate). The pre-emergent herbicide dramatically reduced M. vimineum in year 2 of the study, but not most resident plants, which were perennials and indirectly benefited from the herbicide at a more productive site, presumably due to reduced competition from M. vimineum. CONCLUSIONS: Diversity-mediated resistance did not effectively deter invasion by a highly competitive invader. In the case of M. vimineum and at more productive sites, it would appear that nearly complete removal of this invader is necessary to preserve plant species diversity.


Asunto(s)
Biodiversidad , Herbicidas , Especies Introducidas , Herbicidas/farmacología , Poaceae/fisiología , Poaceae/crecimiento & desarrollo
3.
Ecol Evol ; 14(6): e11525, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932945

RESUMEN

Invasive plants exert significant ecological impacts on native plants, communities, and ecosystems. However, consistent conclusions regarding how traits of invasive plants, native plants, and their divergences affect invasion dynamics are still lacking. Here, we conducted a pairwise common garden experiment to investigate how invasion was influenced not only by invasive plants but also by native plants, aiming to elucidate the role of invasive-plant traits, native-plant traits, and their divergences in invasion processes. Our findings revealed variations in invasive stage depending on the combinations of invasive and native plants. Specifically, native plants such as A. argyi, A. lavandulifolia, and C. album exhibited competitive superiority when co-occurring with the three invasive plants. S. viridis, A. vestita, and A. annua had competitive superiority when they co-occurred with E. canadensis, G. quadriradiata, and E. annuus respectively. Furthermore, our results demonstrated that the competitive abilities of invasive plants were primarily influenced by factors such as height, diameter, and biomass allocation, while native plants' competitive abilities were mainly affected by diameter, biomass allocation, and function group differences. Moreover, our analysis revealed that invasive-plant traits, native-plant traits, their divergences, and their interactions together explained 36.88% of the variation in invasion dynamics, with invasive-plant traits and the native-plant traits explaining 10.19% and 6.88%, respectively. In conclusion, the traits of invasive and native plants, along with their divergences, significantly influence interspecific relationships, and influencing the invasive stages. Divergences in competitive strategies between the native plants and invasive plants facilitated invasion processes. Our study not only contributes to understanding the mechanisms underlying invasion, but also provides a scientific foundation for predicting and managing the negative effects of invasive plants.

4.
Oecologia ; 205(1): 13-25, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38758233

RESUMEN

A fundamental question in invasive plant ecology is whether invasive and native plants have different ecological roles. Differences in functional traits have been explored, but we lack a comparison of the factors affecting the spread of co-occurring natives and invasives. Some have proposed that to succeed, invasives would colonize a wider variety of sites, would disperse farther, or would be better at colonizing sites with more available light and soil nutrients than natives. We examined patterns of spread over 70 years in a regenerating forest in Connecticut, USA, where both native and invasive species acted as colonizers. We compared seven invasive and 19 native species in the characteristics of colonized plots, variation in these characteristics, and the importance of site variables for colonization. We found little support for the hypotheses that invasive plants succeed by dispersing farther than native plants or by having a broader range of site tolerances. Colonization by invasives was also not more dependent on light than colonization by natives. Like native understory species, invasive plants spread into closed-canopy forest and species-rich communities despite earlier predictions that these communities would resist invasion. The biggest differences were that soil nitrate and the initial land cover being open field increased the odds of colonization for most invasives but only for some natives. In large part, though, the spread of native and invasive plants was affected by similar factors.


Asunto(s)
Bosques , Especies Introducidas , Connecticut , Suelo , Plantas , Ecosistema
5.
Sci Total Environ ; 921: 171135, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402976

RESUMEN

The diversity-invasibility hypothesis predicts that native plant communities with high biodiversity should be more resistant to invasion than low biodiversity communities. However, observational studies have found that there is often a positive relationship between native community diversity and invasibility. Pollutants were not tested for their potential to cause this positive relationship. Here, we established native communities with three levels of diversity (1, 2 and 4 species) and introduced an invasive plant [Symphyotrichum subulatum (Michx.) G. L. Nesom] to test the effects of different pollutant treatments (i.e., unpolluted control, microplastics (MPs) alone, cadmium (Cd) alone, and their combination) on the relationship between native community diversity and community invasibility. Our results indicate that different MPs and Cd treatments altered the invasibility of native communities, but this effect may depend on the type of pollutant. MPs single treatment reduced invasion success, and the degree of reduction increased with increasing native community diversity (Diversity 2: - 14.1 %; Diversity 4: - 63.1 %). Cd single treatment increased the aboveground biomass of invasive plants (+ 40.2 %) and invasion success. The presence of MPs inhibited the contribution of Cd to invasion success. Furthermore, we found that the complementarity and selection effects of the native community were negatively correlated with invasion success, and their relative contributions to invasion success also depended on the pollutant type. We found new evidence of how pollutants affect the relationship between native community diversity and habitat invasibility, which provides new perspectives for understanding and managing biological invasions in the context of environmental pollution. This may contribute to promoting the conservation of biodiversity, especially in ecologically sensitive and polluted areas.


Asunto(s)
Cadmio , Contaminantes Ambientales , Cadmio/toxicidad , Microplásticos , Plásticos , Ecosistema , Biodiversidad , Plantas , Especies Introducidas
6.
Mar Pollut Bull ; 198: 115871, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38086107

RESUMEN

Non-indigenous species (NIS) spread from marinas to natural environments is influenced by niche availability, habitat suitability, and local biotic resistance. This study explores the effect of indigenous fish feeding behaviour on NIS proliferation using fouling communities, pre-grown on settlement plates, as two distinct, representative models: one from NIS-rich marinas and the other from areas outside marinas with fewer NIS. These plates were mounted on a Remote Video Foraging System (RVFS) near three marinas on Madeira Island. After 24-h, NIS abundance was reduced by 3.5 %. Canthigaster capistrata's preference for marinas plates suggests potential biotic resistance. However, Sparisoma cretense showed equal biting frequencies for both plate types. The cryptogenic ascidian Trididemnum cereum was the preferred target for the fish. Our study introduces a global framework using RVFS for in-situ experiments, replicable across divers contexts (e.g., feeding behaviour, biotic resistance), which can be complemented by metabarcoding and isotopic analysis to confirm consumption patterns.


Asunto(s)
Especies Introducidas , Tetraodontiformes , Animales , Ecosistema , Conducta Alimentaria , Portugal
7.
Ecol Evol ; 13(9): e10468, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37664495

RESUMEN

Alien plants experience novel abiotic conditions and interactions with native communities in the introduced area. Intra- and interspecific selection on functional traits in the new environment may lead to increased population growth with time since introduction (residence time). However, selection regimes might differ depending on the invaded habitat. Additionally, in high-competition habitats, a build-up of biotic resistance of native species due to accumulation of eco-evolutionary experience to aliens over time may limit invasion success. We tested if the effect of functional traits and the population dynamics of aliens depends on interspecific competition with native plant communities. We conducted a multi-species experiment with 40 annual Asteraceae that differ in residence time in Germany. We followed their population growth in monocultures and in interspecific competition with an experienced native community (varying co-existence times between focals and community). To more robustly test our findings, we used a naïve community that never co-existed with the focals. We found that high seed mass decreased population growth in monocultures but tended to increase population growth under high interspecific competition. We found no evidence for a build-up of competition-mediated biotic resistance by the experienced community over time. Instead, population growth of the focal species was similarly inhibited by the experienced and naïve community. By comparing the effect of experienced and naïve communities on population dynamics over 2 years across a large set of species with a high variation in functional traits and residence time, this study advances the understanding of the long-term dynamics of plant invasions. In our study system, population growth of alien species was not limited by an increase of competitive effects by native communities (one aspect of biotic resistance) over time. Instead, invasion success of alien plants may be limited because initial spread in low-competition habitats requires different traits than establishment in high-competition habitats.

8.
Front Plant Sci ; 14: 1219580, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528972

RESUMEN

Spilocea oleagina is a dangerous obligate fungal pathogen of olive, feared in the Mediterranean countries, causing Peacock's eye or leaf spot infection, which can lead to a serious yield loss of approximately 20% or higher depending on climatic conditions. Coping with this disease is much more problematic for organic farms. To date, knowledge on the genetic control of possible mechanisms of resistance/low susceptibility is quite limited. In this work, comparative transcriptomic analysis (RNA-seq) was conducted in leaf tissues of a low susceptible cultivar Koroneiki and a high susceptible cultivar Nocellara del Belice, both tested in the field using the NaOH test, considering two stages-"zero sign of disease" and "evident sign of infection". Cultivars showed a very large number of differentially expressed genes (DEGs) in both stages. 'Koroneiki' showed an extensive hormonal crosstalk, involving Abscisic acid (ABA) and ethylene synergistically acting with Jasmonate, with early signaling of the disease and remarkable defense responses against Spilocea through the over-expression of many resistance gene analogs or pathogenesis-related (PR) genes: non-specific lipid-transfer genes (nsLTPs), LRR receptor-like serine/threonine-protein kinase genes, GDSL esterase lipase, defensin Ec-AMP-D2-like, pathogenesis-related leaf protein 6-like, Thaumatin-like gene, Mildew resistance Locus O (MLO) gene, glycine-rich protein (GRP), MADS-box genes, STH-21-like, endochitinases, glucan endo-1,3-beta-glucosidases, and finally, many proteinases. Numerous genes involved in cell wall biogenesis, remodeling, and cell wall-based defense, including lignin synthesis, were also upregulated in the resistant cultivar, indicating the possible role of wall composition in disease resistance. It was remarkable that many transcription factors (TS), some of which involved in Induced Systemic Resistance (ISR), as well as some also involved in abiotic stress response, were found to be uniquely expressed in 'Koroneiki', while 'Nocellara del Belice' was lacking an effective system of defense, expressing genes that overlap with wounding responses, and, to a minor extent, genes related to phenylpropanoid and terpenoid pathways. Only a Thaumatin-like gene was found in both cultivars showing a similar expression. In this work, the genetic factors and mechanism underlying the putative resistance trait against this fungal pathogen were unraveled for the first time and possible target genes for breeding resistant olive genotypes were found.

9.
Environ Monit Assess ; 195(8): 985, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488362

RESUMEN

Planorbella trivolvis (ramshorn snail) is one of India's most extensively sold exotic aquarium pet snails. The unintentional or deliberate release of P. trivolvis may result in the colonisation and establishment as an invasive snail in freshwater ecosystems. However, the successful invasion of P. trivolvis will depend on several abiotic and biotic factors of the concerned freshwater ecosystem. We have assessed the possibility of overcoming the opposing factors in P. trivolvis invasion through laboratory-based experiments and examined the effects of household-derived pollutants on egg hatchability, adult survivability and fecundity, and temperature (15 to 35 °C) on growth, sexual maturity, and reproduction. Additionally, we have evaluated the potential of native predators as biotic resistance to invasion by prey-choice experiment. The results indicated that egg hatchability, adult survivability, and fecundity were reduced with increasing pollutant concentration. However, the same traits did not differ from a native freshwater snail, Indoplanorbis exustus. The fecundity of P. trivolvis increased with increasing body size, but no considerable differences at different temperature levels suggest a wide range of adaptation to temperature. Faster growth and the requirement of comparatively few days to attain sexual maturity were observed in the higher temperatures. The native predators, Glossiphonia weberi and Diplonychus rusticus, avoided P. trivolvis as prey over the alternative prey snails in most instances, suggesting the masking of biotic resistance against the colonisation. Our observations indicate that the chance dispersal of P. trivolvis from household or commercial aquaria may lead to a possible invasion of freshwater ecosystems under suitable conditions.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Animales , Monitoreo del Ambiente , India , Caracoles
10.
Ecol Appl ; 33(8): e2819, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36793187

RESUMEN

Understanding the mechanisms underlying the invasion success or failure of alien species can help to predict future invasions and cope with the invaders. The biotic resistance hypothesis posits that diverse communities are more resistant to invasion. While many studies have examined this hypothesis, the majority of them have focused on the relationship between alien and native species richness in plant communities, and results have often been inconsistent. In southern China, many rivers have been invaded by alien fish species, providing an opportunity to test the resistance of native fish communities to alien fish invasions. Using survey data for 60,155 freshwater fish collected from five main rivers of southern China for 3 years, we assessed the relationships between native fish richness and the richness and biomass of alien fishes at river and reach spatial scales, respectively. Based on two manipulative experiments, we further examined the impact of native fish richness on habitat selection and the reproductive ability of an exotic model species Coptodon zillii. We found no apparent relationship between alien and native fish richness, whereas the biomass of alien fish significantly decreased with increasing native fish richness. In experiments, C. zillii preferred to invade those habitats that had low native fish richness, given evenly distributed food resources; reproduction of C. zillii was strongly depressed by a native carnivorous fish Channa maculata. Together, our results indicate that native fish diversity can continue to provide biotic resistance to alien fish species in terms of limiting their growth, habitat selection, and reproduction when these aliens have successfully invaded southern China. We thus advocate for fish biodiversity conservation, especially for key species, to mitigate against the population development and ecological impact of alien fish species.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Biomasa , Especies Introducidas , Peces , Fertilidad , China
11.
Ecol Lett ; 25(11): 2525-2539, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36209457

RESUMEN

As invasive species spread, the ability of local communities to resist invasion depends on the strength of biotic interactions. Evolutionarily unused to the invader, native predators or herbivores may be initially wary of consuming newcomers, allowing them to proliferate. However, these relationships may be highly dynamic, and novel consumer-resource interactions could form as familiarity grows. Here, we explore the development of effective biotic resistance towards a highly invasive alga using multiple space-for-time approaches. We show that the principal native Mediterranean herbivore learns to consume the invader within less than a decade. At recently invaded sites, the herbivore actively avoided the alga, shifting to distinct preference and high consumptions at older sites. This rapid strengthening of the interaction contributed to the eventual collapse of the alga after an initial dominance. Therefore, our results stress the importance of conserving key native populations to allow communities to develop effective resistance mechanisms against invaders.


Asunto(s)
Herbivoria , Especies Introducidas , Ecosistema , Plantas , Animales
12.
Oecologia ; 200(1-2): 221-230, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36153377

RESUMEN

Sicyos angulatus is a serious threat to riverine ecosystem functions and services worldwide. Here, we studied the effect of species identity and diversity on biotic resistance to S. angulatus under two different soil nutrient levels (unfertilized vs. fertilized). Soil nutrient levels showed no significant effect on invasion by S. angulatus in the control treatment, where intervention by native plants was absent. Species identity of native plants and its interaction with soil nutrient levels had a significant effect on biotic resistance to S. angulatus. For instance, Pennisetum alopecuroides and Lespedeza cuneata best resisted invasion in fertilized soil, whereas Lespedeza bicolor and Lactuca indica best resisted invasion in unfertilized soil. In addition, a mixture of four plant species resisted invasion equally as well as the monoculture of a species in unfertilized soil, whereas the mixed treatment resisted invasion much better in fertilized soil compared with unfertilized soil. Structural equation modeling revealed that species identity and diversity as well as fertilizer application significantly influenced biotic resistance to S. angulatus invasion, while soil nutrients did not influence invasion success directly. Based on these results, we strongly suggest sowing seed mixtures of various species after eradicating S. angulatus plants to prevent re-invasion. Overall, these results demonstrate how native plants rely on resource availability to resist colonization by an invasive plant, such as S. angulatus. This information can be used for the development of improved guidelines for plant restoration and invasive species control.


Asunto(s)
Especies Introducidas , Suelo , Ecosistema , Fertilizantes , Nutrientes , Plantas , Suelo/química
13.
Oecologia ; 199(3): 661-669, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35781744

RESUMEN

In Patagonia (Argentina) two non-native vespid wasps became established in the last decades. Vespula germanica was first detected in 1980, while V. vulgaris arrived some 30 years later. Both species can have a strong negative impact on agro-industrial economic activities, the natural environment, and outdoor human activities. Biological invasions may be influenced negatively by the degree of interaction with the resident native community and alien species already present. The sequential arrival and coexistence of Vespula wasps in Argentina for several years allows us to understand key questions of invasion ecology. Additionally, recognizing the outcome of the invasion by vespids in Patagonia, a region lacking native social wasps, may help plan species-focused mitigation and control strategies. We explored the role of competition in terms of invasion success, and the strategies that promote coexistence. Two possible scenarios, using niche overlap indices and isocline equations, were proposed to determine competition coefficients. Using a simple mathematical modeling framework, based on field collected data, we show that food resources do not play a central role in competitive interaction. The competition coefficients obtained from the equations were different from those inferred from the overlap indices (0.53 and 0.54-0.076 and 0.197, respectively). Together, these findings suggest that no matter the arrival order, V. vulgaris, always reaches higher densities than V. germanica when both species invade new regions. Our work contributes to further our understanding on the worldwide invasion processes deployed by these two eusocial insects.


Asunto(s)
Avispas , Animales , Argentina , Especies Introducidas , Modelos Teóricos
14.
Ecol Appl ; 32(8): e2697, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35731934

RESUMEN

Specialized natural enemies have long been used to implement the biological control of invasive insects. Although research tracking populations following biological control introductions has traditionally focused on the impact of the introduced agent, recent studies and reviews have reflected an appreciation of the complex interactions of the introduced specialist agents with native generalist natural enemies. These interactions can be neutral, antagonistic, or complementary. Here we studied the invasive defoliator winter moth (Operophtera brumata) in the Northeast USA to investigate the role of native, generalist pupal predators along with the introduced, host-specific parasitoid Cyzenis albicans. Prior research in Canada has shown that predation of winter moth pupae from native generalists increased after C. albicans was established as a biological control agent. To explain this phenomenon, the following hypotheses were suggested: (H1 ) parasitoids suppress the winter moth population to a density that can be maintained by generalist predators, (H2 ) unparasitized pupae are preferred by predators and therefore experience higher mortality rates, or (H3 ) C. albicans sustains higher predator populations throughout the year more effectively than winter moth alone. We tested these hypotheses by deploying winter moth pupae over 6 years spanning 2005 to 2017 and by modeling pupal predation rates as a function of winter moth density and C. albicans establishment. We also compared predation rates of unparasitized and parasitized pupae and considered additional mortality by a native pupal parasitoid. We found support for the first hypothesis; we detected both temporal and spatial density dependence, but only in the latter years of the study when winter moth densities were low. We found no evidence for the latter two hypotheses. Our findings suggest that pupal predators have a regulatory effect on winter moth populations only after populations have been reduced, presumably by the introduction of the host-specific parasitoid C. albicans.


Asunto(s)
Mariposas Nocturnas , Animales , Insectos , Conducta Predatoria , Estaciones del Año , Bosques
15.
Ecol Lett ; 25(3): 661-672, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35199921

RESUMEN

Biological invasions pose one of the most severe environmental challenges of the twenty-first century. A longstanding idea is that invasion risk is predictable based on the phylogenetic distance - and hence ecological resemblance - between non-native and native species. However, current evidence is contradictory. To explain these mixed results, it has been proposed that the effect is scale-dependent, with invasion inhibited by phylogenetic similarity at small spatial scales but enhanced at larger scales. Analyzing invasion outcomes in a global sample of bird communities, we find no evidence to support this hypothesis. Instead, our results suggest that invaders are locally more successful in the presence of closely related and ecologically similar species, at least in human-altered environments where the majority of invasions have occurred. Functional trait analyses further confirm that the ecological niches of invaders are phylogenetically conserved, supporting the notion that successful invasion in the presence of close relatives is driven by shared adaptations to the types of niches available in novel environments.


Asunto(s)
Ciudadanía , Ecosistema , Adaptación Fisiológica , Animales , Aves , Humanos , Especies Introducidas , Filogenia
16.
Ecol Evol ; 12(1): e8549, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127048

RESUMEN

In their seminal paper, Shea and Chesson (Trends in Ecology & Evolution, 2002, 17, 170) developed a highly cited model (S&C model) showing scale dependency in the native-exotic richness relationships. Two decades later, extensive additional data have been accumulated, leading to new findings and insights. Accordingly, two updates were made here to the original S&C model: (1) changing the "negative" richness relationship between natives and exotics to "non-consistent" or "non-significant"; and (2) modifying the original diagram to correctly represent native and exotic species richness and their correlations across both small and large scales.

17.
Mar Environ Res ; 174: 105563, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35078029

RESUMEN

The susceptibility of a community to invasions is not the only factor influencing the success of the introduction of non-indigenous species (NIS). Because the conditions of the invaded environment tend to be unpredictable, plastic responses should increase the success of NIS in a new environment. Sun-corals are invaders in the Atlantic Ocean that present a range of strategies and plastic responses to deal with stress and distinct environmental conditions. We experimentally tested the plastic responses of sun-corals when exposed to different predation pressures and hydrodynamics in a recreational marina where sun-corals abundance varies spatially along with the environmental conditions. We separated young sun-coral colonies in two experiments: one controlling the presence of predators and the other manipulating water motion. While predation had no effect, revealing that even small young colonies are somehow protected against predators, corals increased colony area under reduced water motion but grew more polyps under greater water motion. These results highlight that plasticity in modular growth may be important for sun-corals to successfully invade distinct regions despite the hydrodynamic conditions. Increasing the colony area implicate in monopolization of space in calmer waters whilst growing more polyps allows it to have more mouths for feeding in turbulent food-poor waters. This response is particularly interesting as it is similar to the response of another NIS in the same site-the bryozoan Schizoporella errata. Phenotypic plasticity of reproductive strategies, including asexual propagation as observed here, appears to be relevant for modular NIS by facilitating the success on the invasion process in variable habitats.


Asunto(s)
Antozoos , Briozoos , Animales , Océano Atlántico , Arrecifes de Coral , Ecosistema , Hidrodinámica
18.
Ecol Lett ; 25(4): 778-789, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34972253

RESUMEN

Elton's biotic resistance hypothesis, which posits that diverse communities should be more resistant to biological invasions, has received considerable experimental support. However, it remains unclear whether such a negative diversity-invasibility relationship would persist under anthropogenic environmental change. By using the common ragweed (Ambrosia artemisiifolia) as a model invader, our 4-year grassland experiment demonstrated consistently negative relationships between resident species diversity and community invasibility, irrespective of nitrogen addition, a result further supported by a meta-analysis. Importantly, our experiment showed that plant diversity consistently resisted invasion simultaneously through increased resident biomass, increased trait dissimilarity among residents, and increased community-weighted means of resource-conservative traits that strongly resist invasion, pointing to the importance of both trait complementarity and sampling effects for invasion resistance even under resource enrichment. Our study provides unique evidence that considering species' functional traits can help further our understanding of biotic resistance to biological invasions in a changing environment.


Asunto(s)
Especies Introducidas , Nitrógeno , Biodiversidad , Biomasa , Ecosistema , Plantas
19.
Front Insect Sci ; 2: 937129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38468797

RESUMEN

Lycorma delicatula (White) (Hemiptera: Fulgoridae), native to China, was first detected in Pennsylvania, U.S. in 2014. This polyphagous pest can feed on over 70 plant species including agricultural crops, like grapes, that have high economic value. Anastatus orientalis Yang and Choi (Hymenoptera: Eupelmidae) is an egg parasitoid associated with L. delicatula egg masses in China that is being evaluated for possible introduction into the U.S. for classical biological control of L. delicatula. In support of this program, the suitability of frozen L. delicatula eggs for parasitization by A. orientalis was evaluated in a quarantine laboratory. Host egg masses held for four different cold storage periods (5°C for <1, 4, 8 and 11 months) were frozen at -40°C for 1 hour or 24 hours and exposed to female A. orientalis for parasitization for seven days. Following this experimental exposure period, rates of L. delicatula nymph emergence and A. orientalis parasitism were assessed for each of the eight different cold storage treatments. Host acceptance and suitability of frozen L. delicatula eggs by A. orientalis was assessed in terms of percentage parasitism, offspring sex ratio, and hind tibia length of emerged parasitoids. Results indicated that L. delicatula nymphs failed to emerge from eggs that were exposed to -40°C for 1 hour and 24 hours and A. orientalis could successfully parasitize L. delicatula eggs regardless of cold storage and freezing treatment. These results add a new tool for long term maintenance of L. delicatula egg masses and rearing methods for egg parasitoids of this pest. Additionally, it may be possible to field deploy sentinel eggs of L. delicatula frozen at -40°C to survey for resident natural enemy species capable of parasitizing eggs of this pest in advance of anticipated L. delicatula invasions into new areas.

20.
Elife ; 102021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34662276

RESUMEN

Common garden experiments that inoculate a standardised growth medium with synthetic microbial communities (i.e. constructed from individual isolates or using dilution cultures) suggest that the ability of the community to resist invasions by additional microbial taxa can be predicted by the overall community productivity (broadly defined as cumulative cell density and/or growth rate). However, to the best of our knowledge, no common garden study has yet investigated the relationship between microbial community composition and invasion resistance in microcosms whose compositional differences reflect natural, rather than laboratory-designed, variation. We conducted experimental invasions of two bacterial strains (Pseudomonas fluorescens and Pseudomonas putida) into laboratory microcosms inoculated with 680 different mixtures of bacteria derived from naturally occurring microbial communities collected in the field. Using 16S rRNA gene amplicon sequencing to characterise microcosm starting composition, and high-throughput assays of community phenotypes including productivity and invader survival, we determined that productivity is a key predictor of invasion resistance in natural microbial communities, substantially mediating the effect of composition on invasion resistance. The results suggest that similar general principles govern invasion in artificial and natural communities, and that factors affecting resident community productivity should be a focal point for future microbial invasion experiments.


Much like animals and plants, microorganisms such as bacteria and fungi naturally live in communities, where different species exist together and share the same resources. These communities can be quite stable over time and resist the invasion of new species ­ for example, by collectively and rapidly consuming all the available resources before invaders arrive. The gut microbiome is one example of such a microbial community, but there are many others. There have been many studies of how artificial microbial communities created in the lab resist invasion, but it remains unclear how naturally-occurring microbial communities do so, because they are harder to study in the lab. A leading theory is that certain combinations of microbes (i.e. communities) grow and consume resources faster than other combinations ­ this is known as achieving high productivity. Jones et al. conducted invasion experiments across hundreds of naturally-occurring microbial communities collected from woodland puddles that form in the exposed roots of beech trees. Each community contained different combinations of bacteria, but they all largely survived by breaking down leaf litter, so Jones et al. created a tea from beech leaves in which to grow these natural communities in the lab. The relationships between community composition, productivity and invasion resistance were then assessed using a combination of DNA sequencing, measurements of community growth and measurements of invader survival. Jones et al. found that natural combinations of bacteria that grew well together drove invasion resistance in these communities, mirroring results seen in much more artificial communities grown in the lab. These results suggest that productivity is a key factor underpinning invasion resistance in naturally-occurring microbial communities. This is a useful insight that could shape thinking about how the long-term stability of beneficial microbial communities ­ such as healthy gut microbiomes ­ might be improved, and how harmful communities ­ such as dental plaques ­ could be destabilised. The next step will be to conduct similar experiments in other natural microbe communities to see how generally applicable these results are.


Asunto(s)
Microbiota , Pseudomonas fluorescens/fisiología , Pseudomonas putida/fisiología , Pseudomonas fluorescens/genética , Pseudomonas putida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA