Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
J Agric Food Chem ; 72(37): 20362-20373, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39231781

RESUMEN

Recognizing the challenges in using botanicals as sustainable pest control agents due to compositional variation, this study addresses the limitations of traditional component-based approaches such as Hewlett and Plackett or Wadley's models. Based on the assumption of noninteractivity among constituents, these models often fail to predict outcomes accurately due to dynamic intermolecular interactions. We introduce a whole mixture-based approach, employing a combination of experimental design and polynomial modeling. This technique accurately predicts miticidal activity on Tetranychus urticae, ecotoxicity on Daphnia magna, and phytotoxic activities on Phaseolus vulgaris of Rosemarinus officinalis essential oils with varying composition. The RMSE values from the polynomial model are 66.9 and 5.0 for miticidal activity and ecotoxicity, respectively, while they are much higher in component-based models, up to 1097.7 and 41.3, respectively. Additionally, we utilize multiobjective optimization algorithms to identify the optimal supplementary blending of oils and compounds. This strategy aims to maximize miticidal effectiveness while minimizing ecotoxicity and phytotoxicity. Our approach for predicting multicomponent mixture effects is likely to bridge the knowledge gap between research and commercialization.


Asunto(s)
Aceites Volátiles , Rosmarinus , Tetranychidae , Animales , Aceites Volátiles/química , Aceites Volátiles/toxicidad , Aceites Volátiles/farmacología , Rosmarinus/química , Tetranychidae/efectos de los fármacos , Tetranychidae/crecimiento & desarrollo , Daphnia/efectos de los fármacos , Phaseolus/química , Phaseolus/efectos de los fármacos , Phaseolus/crecimiento & desarrollo , Plaguicidas/toxicidad , Plaguicidas/química , Plaguicidas/farmacología , Insecticidas/toxicidad , Insecticidas/química
2.
3 Biotech ; 14(10): 226, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39263325

RESUMEN

Endophytic fungal molecules have the potential to be a cost-effective chemical source for developing eco-friendly disease-controlling pharmaceuticals that target mosquito-borne illnesses. The primary aims of the study were to identify the fungus Fusarium begoniae larvicidal ability against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi. The ethyl acetate extract demonstrated lethal concentrations that kill 50% of exposed larvae (LC50) and 90% of exposed larvae (LC90) for the 1st to 4th instar larvae of An. stephensi (LC50 = 54.821, 66.525, 68.250, and 73.614; LC90 = 104.56, 138.205, 150.415, and 159.466 µg/mL), Cx. quinquefasciatus (LC50 = 64.981, 36.505, 42.230, and 36.514; LC90 = 180.46, 157.105, 140.318, and 153.366 µg/ mL), and Ae. aegypti (LC50 = 74.890, 33.607, 52.173, and 26.974; LC90 = 202.56, 162.205, 130.518, and 163.286 µg/mL). Mycelium metabolites were evaluated for their pupicidal activity towards Ae. aegypti (LC50 = 80.669, LC90 = 119.904), Cx. quinquefasciatus (LC50 = 70.569, LC90 = 109.840), and An. stephensi (LC50 = 73.269, LC90 = 110.590 µg/mL). The highest larvicidal activity was recorded at 300 µg/mL, with 100% mortality against first and second-instar larvae of Cx. quinquefasciatus. Metabolite exposure to larvae exhibited several abnormal behavioral changes. The exposure to F. begoniae metabolite, key esterases such as acetylcholinesterase, α-and-ß-carboxylesterase, and acid and alkaline phosphatase activity significantly decreased compared to control larvae. The outcomes of the histology analysis revealed that the mycelium metabolites-treated targeted larvae had a disorganized abdominal mid and hindgut epithelial cells. The is first-hand information on study of ethyl-acetate-derived metabolites from F. begoniae tested against larvae and pupae of Ae. aegypti, Cx. quinquefasciatus and An. stephensi. Bio-indicator toxicity findings demonstrate that A. nauplii displayed no mortality. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04061-z.

3.
Ecotoxicol Environ Saf ; 283: 116945, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39222612

RESUMEN

The escalating use of inorganic fertilizers and pesticides to boost crop production has led to the depletion of natural resources, contamination of water sources, and environmental crises. In response, the scientific community is exploring eco-friendly alternatives, such as fungal-based biofertilizers and biopesticides, which have proven effectiveness in enhancing plant health and growth while sustainably managing plant diseases and pests. This review article examines the production methodologies of these bioproducts, highlighting their role in sustainable agriculture and advancing our understanding of soil microorganisms. Despite their increasing demand, their global market presence remains limited compared to traditional chemical counterparts. The article addresses: 1) the production of biofertilizers and biopesticides, 2) their contribution to crop productivity, 3) their environmental impact and regulations, and 4) current production technologies. This comprehensive approach aims to promote the transition towards more sustainable agricultural practices.


Asunto(s)
Agentes de Control Biológico , Fertilizantes , Hongos , Agentes de Control Biológico/normas , Hongos/metabolismo , Producción de Cultivos , Micronutrientes , Suelo/química , Microbiología Industrial/métodos , Microbiología Industrial/tendencias
4.
Int J Biol Macromol ; 278(Pt 3): 134684, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39214830

RESUMEN

A new formulation that gradually released encapsulated Thuja plicata essential oil (TPEO) as an active component from a biopolymer matrix within a given period was obtained. Antimicrobial activity was determined in in-vitro tests where pure TPEO successfully inhibited the development of different Phytophthora species. The TPEO essential oil was encapsulated into the biopolymer matrix and an oil-in-water emulsion was formed. FTIR spectra analysis confirmed the formation of electrostatic interaction between these polymers, and hydrogen interactions between active components of TPEO and polymer chains. The stability of the emulsions was confirmed by zeta potential measurements, with a value of about 30 mV, even after 14 days of aging. UV-Vis spectra analysis revealed that >60 % of TPEO remained in the emulsion after 14 days of exposure to ambient conditions, whereas pure TPEO evaporated faster, and around 20 % remained after 6 days. Encapsulated TPEO almost completely inhibited the growth of Phytophthora species during the ten-day day's exposition being statistically significantly improved compared to fungicide treatment. It was demonstrated that the emulsion exhibited a prolonged antimicrobial effect and successfully suppressed the growth of Phytophthora species, and can be considered as a means of protection in forests and crops.


Asunto(s)
Aceites Volátiles , Phytophthora , Phytophthora/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Biopolímeros/química , Biopolímeros/farmacología , Plaguicidas/química , Plaguicidas/farmacología , Raíces de Plantas/química , Emulsiones/química , Pruebas de Sensibilidad Microbiana
5.
Compr Rev Food Sci Food Saf ; 23(5): e13419, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39113609

RESUMEN

The use of pesticides in viticulture may play a crucial role in ensuring the health and quality of grapes. This review analyzes the most common pesticides used, illustrating their classification and toxicity, and their variations throughout the winemaking process. Fungicides are generally harmless or mildly toxic, whereas insecticides are classified as either highly or moderately hazardous. Potential alternatives to synthetic pesticides in wine production are also reviewed, thereby including biopesticides and biological agents. Analytical methods for detecting and quantifying pesticide residues in wine are then described, including liquid chromatography and gas chromatography coupled with mass spectrometry. This review also discusses the impact of the winemaking process on pesticide content. Pesticides with strong hydrophobicity were more likely to accumulate in solid byproducts, whereas hydrophilic pesticides were distributed more in the liquid phase. Grape's skin contains lipids, so hydrophobic pesticides adsorb strongly on grape surfaces and the clarification has been shown to be effective in the reduction of hydrophobic compounds. Therefore, the final wine could have more quantities of hydrophilic pesticides. Alcoholic fermentation has been shown to be crucial in pesticide dissipation. However, pesticide residues in wine have been shown an antagonistic effect on yeasts, affecting the safety and quality of wine products. Therefore, proteomic and genomic analyses of yeast growth are reviewed to understand the effects of pesticides on yeast during fermentation. The last section describes new effective methods used in removing pesticides from grapes and wine, thereby improving product quality and reducing harmful effects.


Asunto(s)
Fermentación , Plaguicidas , Vitis , Vino , Vino/análisis , Plaguicidas/química , Plaguicidas/análisis , Vitis/química , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Manipulación de Alimentos/métodos , Contaminación de Alimentos/análisis
6.
Pest Manag Sci ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148493

RESUMEN

BACKGROUND: RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing. Owing to its high specificity, this technology is being developed for use in dsRNA-based biopesticides for control of pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive. Ryanodine receptors (RyRs) are intracellular calcium channels regulating calcium ion (Ca2+) release. The chemical pesticide class of diamides functions agonistically against lepidopteran RyR, resulting in uncontrolled Ca2+ release, feeding cessation and death. Resistance to diamides has emerged in T. absoluta, derived from RyR point mutations. RESULTS: RNAi was used to target RyR transcripts of T. absoluta. Data presented here demonstrate the systemic use of exogenous T. absoluta RyR-specific (TaRy) dsRNA in tomato plants (Solanum lycopersicum) to significantly downregulate expression of the target gene, resulting in significant insect mortality and reduced leaf damage. Using a leaflet delivery system, daily dosing of 3 µg TaRy dsRNA for 72 h resulted in 50% downregulation of the target gene and 50% reduction in tomato leaf damage. Corrected larval mortality and adult emergence were reduced by 38% and 33%, respectively. TaRy dsRNA demonstrated stability in tomato leaves ≤72 h after dosing. CONCLUSIONS: This work identifies TaRy as a promising target for RNAi control of this widespread crop pest. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

7.
Heliyon ; 10(14): e34605, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39148997

RESUMEN

Tea red spider mite (TRSM), Oligonychus coffeae Nietner, is one of the major pests that cause considerable crop losses in all tea-growing countries. TRSM management often involves the use of multiple chemical pesticides that are linked to human health risks and environmental pollution. Considering these critical issues, employing biocontrol agents is a potential green approach that may replace synthetic pesticides. This review study aims to discuss the efficacy of plant extracts, entomopathogenic microorganisms, and predators in controlling TRSM. This study includes 44 botanical extracts, 14 microbial species, and 8 potential predators used to control TRSM, along with their respective modes of action. Most of the botanical extracts have ovicidal, adulticidal, and larvicidal activity, ranging from 80 to 100 %, attributed to bioactive compounds such as phenols, alcohols, alkaloids, tannins, and other secondary metabolites. Among microbial pesticides, Purpureocillium lilacinum, Metarhizium robertsii, Aspergillus niger, Pseudomonas fluorescens, and Pseudomonas putida are highly effective against TRSM without causing any harm to the nontarget beneficial insects. Besides, some predators, including green lacewings, ladybirds, and phytoseiid mites have the potential to control TRSM. Employing these biocontrol agents simultaneously in tea plantations could be more effective in preventing TRSM. Nevertheless, their high biodegradability rate, uneven distribution, and uncontrolled release pose challenges for large-scale field applications. This study also explores how nanotechnology can enhance sustainability by addressing the limitations of biopesticides in field conditions. This review study could contribute to the search for potential biocontrol agents and the development of commercial nano biopesticides to control TRSM.

8.
Plants (Basel) ; 13(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39204667

RESUMEN

Traditional pesticides are based on toxic compounds that can reduce biodiversity, degrade the environment, and contribute to less healthy living. Plant allelochemicals can provide more environmentally friendly and sustainable alternatives. Essential oils (EOs) are complex mixtures of plant secondary metabolites that show strong biological activities. In the present study, the EOs of Cymbopogon citratus were screened for activity against the pinewood nematode (PWN), the causal agent of pine wilt disease. To understand their nematicidal properties, EOs were fractioned into hydrocarbon molecules and oxygen-containing compounds, and their main compounds were acquired and tested separately against the PWN. The EO oxygen-containing molecules fraction was highly active against the PWN (EC50 = 0.279 µL/mL), with citral and geraniol showing higher activities (EC50 = 0.266 and 0.341 µL/mL, respectively) than emamectin benzoate (EC50 = 0.364 µL/mL), a traditional nematicide used against the PWN. These compounds were additionally reported to be less toxic to non-target organisms (fish, invertebrates, and algae) and safer to human health (with higher reported toxicity thresholds) and predicted to exert fewer environmental impacts than traditional nematicides. Resorting to approved natural compounds can quickly leverage the development of sustainable alternatives to traditional nematicides.

9.
Plants (Basel) ; 13(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39204768

RESUMEN

Aphids pose a significant threat to global agricultural crop production, leading to widespread pesticide use and resistance. This necessitates the use of alternative substances, like plant secondary metabolites (PSMs). Plants have developed protective compounds known as alkaloids, terpenoids, phenolics, sulfur- and nitrogen-containing metabolites. These compounds exhibit promising characteristics against aphids, such as antifeedant, aphicidal, and disrupting survival fitness. This review highlights the importance and application of secondary metabolites in combating aphid populations. Different insect-resistant substances have different mechanisms for managing aphids and other pests, including defensive signaling, inhibiting growth, and attracting natural predators by releasing herbivore-induced volatiles (HIPV). The application of plant secondary metabolites as biopesticides has proven to be an effective, economical, and eco-friendly alternative to synthetic pesticide chemicals. Furthermore, this review comprehensively discusses the principle role of plant secondary metabolites, encouraging sustainable agricultural practices and emphasizing the integrated management of the aphid population.

10.
Molecules ; 29(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39064827

RESUMEN

The use of chemical pesticides in agriculture contributes to soil, water and air pollution, biodiversity loss, and injury to non-target species. The European Commission has already established a Harmonized Risk Indicator to quantify the progress in reducing the risks linked to pesticides. Therefore, there is an increasing need to promote biopesticides, or so-called low-risk pesticides (LRP). Tea tree oil (TTO) is known for its antiseptic, antimicrobial, antiviral, antifungal, and anti-inflammatory properties. TTO has been extensively studied in pest management as well as in the pharmaceutical and cosmetic industry; there are already products based on its active substances on the market. This review focuses on the overall evaluation of TTO in terms of effectiveness and safety as a biopesticide for the first time. The collected data can be an added value for further evaluation of TTO in terms of the authorization extension as a fungicide in 2026.


Asunto(s)
Plaguicidas , Aceite de Árbol de Té , Aceite de Árbol de Té/química , Plaguicidas/farmacología , Agentes de Control Biológico/farmacología , Humanos
11.
Crit Rev Biotechnol ; : 1-20, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987982

RESUMEN

The increasing public demand to avoid the use of synthetic pesticides and fertilizers in agricultural production systems, causing serious environmental damages, has challenged industry to develop new and effective solutions to manage and control phytopathogens. Biopesticides, particularly microbial-based biopesticides, are a promising new alternative with high biodegradability, specificity, suitability for incorporation into integrated pest management practices, low likelihood of resistance development, and practically no known human health risks. However: expensive production methods, narrow action spectra, susceptibility to environmental conditions, short shelf life, poor storage stability, legislation registry constraints, and general lack of knowledge are slowing down their adoption. In addition to regulatory framework revisions and improved training initiatives, improved preservation methods, thoughtfully designed formulations, and field test validations are needed to offer new microbial- and nematode-based biopesticides with improved efficacy and increased shelf-life. During the last several years, substantial advancements in biopesticide production have been developed. The novelty part of this review written in 2023 is to summarize (i) mechanisms of action of beneficial microorganisms used to increase crop performance and (ii) successful formulation including commercial products for the biological control of phytopathogens based on microorganisms, nematode and/or metabolites.

12.
Front Plant Sci ; 15: 1420068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957597

RESUMEN

Some volatile organic compounds (VOCs) produced by microorganisms have the ability to inhibit the growth and development of plant pathogens, induce the activation of plant defenses, and promote plant growth. Among them, 6-pentyl-alpha-pyrone (6-PP), a ketone produced by Trichoderma fungi, has emerged as a focal point of interest. 6-PP has been isolated and characterized from thirteen Trichoderma species and is the main VOC produced, often accounting for >50% of the total VOCs emitted. This review examines abiotic and biotic interactions regulating the production of 6-PP by Trichoderma, and the known effects of 6-PP on plant pathogens through direct and indirect mechanisms including induced systemic resistance. While there are many reports of 6-PP activity against plant pathogens, the vast majority have been from laboratory studies involving only 6-PP and the pathogen, rather than glasshouse or field studies including a host plant in the system. Biopesticides based on 6-PP may well provide an eco-friendly, sustainable management tool for future agricultural production. However, before this can happen, challenges including demonstrating disease control efficacy in the field, developing efficient delivery systems, and determining cost-effective application rates must be overcome before 6-PP's potential for pathogen control can be turned into reality.

13.
Insects ; 15(7)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057200

RESUMEN

Drosophila suzukii and Tuta absoluta are successful biological invaders of agroecosystems. Their integrated pest management (IPM) programs involve the release and/or conservation of natural enemies. Among these, Ganaspis kimorum is a major Asian parasitoid of D. suzukii and has been introduced as a classical biological control agent of this pest in Europe and North America, while Necremnus tutae is a key fortuitous parasitoid of T. absoluta in the Mediterranean region. Bioinsecticides represent key alternatives to chemicals for controlling both pests. This study investigated the potential compatibility of both parasitoids with Beauveria bassiana, Bacillus thuringiensis, garlic essential oil (EO), and spinosad, in comparison to two synthetic insecticides, cyantraniliprole and chlorantraniliprole. The results showed that combining each of the tested insecticides with G. kimorum slightly increased pest mortality compared to the insecticide alone. Necremnus tutae had a significant additive effect on host mortality when combined with insecticides. Beauveria bassiana and B. thuringiensis were most compatible with both parasitoid species. Both garlic EO and chlorantraniliprole impaired the survival of immature N. tutae and showed sublethal toxicity on the reproductive and non-reproductive behaviors of N. tutae. Spinosad exhibited high acute toxicity on both juvenile and adult parasitoids of both species. Overall, these findings provide useful insights into insecticide selectivity toward two key parasitoids and offer new knowledge on the potential of combining natural enemies and bioinsecticides for optimized IPM.

14.
Insects ; 15(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39057209

RESUMEN

Spodoptera littoralis, commonly known as the Egyptian or African cotton leafworm, is a significant agricultural threat. It is widely distributed in Africa, Mediterranean Europe, and Middle Eastern countries. This polyphagous pest infests numerous crop plants across 44 families, including cotton, soybeans, alfalfa, sweet potato, pepper, eggplant, tomato, maize, lettuce, strawberry, wheat, and hibiscus. The damage caused by S. littoralis on different plant organs, such as young leaves, shoots, stalks, bolls, buds, and fruits, often determines substantial product losses. Current control strategies predominantly rely on synthetic insecticides, which, despite their efficacy, have notable drawbacks, including insecticide resistance, environmental contamination, consumer concerns, and adverse effects on non-target organisms and beneficial insects. In response to these challenges, in this study, we developed and evaluated a garlic EO-based nanoemulsion with a high EO concentration (15%) and low surfactant content to mitigate the possible negative impact on plants and to enhance efficacy against S. littoralis larvae. Laboratory bioassays demonstrated promising larvicidal activity and reduced larval feeding, although some phytotoxicity symptoms were observed. This study underscores the potential of botanical insecticides as sustainable alternatives to synthetic chemicals, emphasizing the importance of balancing efficacy with environmental and ecological considerations in pest management strategies.

15.
ChemSusChem ; : e202400824, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924470

RESUMEN

With the continuous increase in food production to support the growing population, ensuring agricultural sustainability using crop-protecting agents, such as pesticides, is vital. Conventional pesticides pose significant environmental risks, prompting the need for eco-friendly alternatives. This study reports the synthesis of new amide-based insecticidal active ingredients from biomass-derived monomers, specifically furfural and vanillin. The process involves reductive amination followed by carbonylation. The synthesis of the furfural-based carbamate yield reaches a cumulative 88 %, with catalysts Rh/Al2O3 and La(OTf)3 being recyclable at each stage. Insecticidal activity assessments reveal that the furfural carbamate exhibits competitive performance, achieving an LC50 of 254.22 µg/cm2, compared to 251.25 µg/cm2 for carbofuran. Ecotoxicity predictions indicate significantly lower toxicity levels toward non-target aquatic and terrestrial species. The importance of the low octanol-water partition coefficient of the biobased carbamate, attributed to the oxygen heteroatom and electron density of the furan ring, is discussed in detail. Building on these promising results, the synthesis strategy was extended to six other biobased aldehydes, resulting in a diverse portfolio of biomass-derived carbamates. A techno-economic analysis reveals a minimum selling price of 11.1 $/kg, only half that of comparable carbamates, demonstrating the economic viability of these new biobased insecticides.

16.
J Hazard Mater ; 476: 134945, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38905984

RESUMEN

The escalating introduction of pesticides/veterinary drugs into the environment has necessitated a rapid evaluation of their potential risks to ecosystems and human health. The developmental toxicity of pesticides/veterinary drugs was less explored, and much less the large-scale predictions for untested pesticides, veterinary drugs and bio-pesticides. Alternative methods like quantitative structure-activity relationship (QSAR) are promising because their potential to ensure the sustainable and safe use of these chemicals. We collected 133 pesticides and veterinary drugs with half-maximal active concentration (AC50) as the zebrafish embryo developmental toxicity endpoint. The QSAR model development adhered to rigorous OECD principles, ensuring that the model possessed good internal robustness (R2 > 0.6 and QLOO2 > 0.6) and external predictivity (Rtest2 > 0.7, QFn2 >0.7, and CCCtest > 0.85). To further enhance the predictive performance of the model, a quantitative read-across structure-activity relationship (q-RASAR) model was established using the combined set of RASAR and 2D descriptors. Mechanistic interpretation revealed that dipole moment, the presence of C-O fragment at 10 topological distance, molecular size, lipophilicity, and Euclidean distance (ED)-based RA function were main factors influencing toxicity. For the first time, the established QSAR and q-RASAR models were combined to prioritize the developmental toxicity of a vast array of true external compounds (pesticides/veterinary drugs/bio-pesticides) lacking experimental values. The prediction reliability of each query molecule was evaluated by leverage approach and prediction reliability indicator. Overall, the dual computational toxicology models can inform decision-making and guide the design of new pesticides/veterinary drugs with improved safety profiles.


Asunto(s)
Embrión no Mamífero , Plaguicidas , Relación Estructura-Actividad Cuantitativa , Pez Cebra , Animales , Plaguicidas/toxicidad , Plaguicidas/química , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos
17.
Insects ; 15(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921136

RESUMEN

Many organisms, including beneficial entomopathogenic nematodes (EPNs), are commonly found in the soil environment. EPNs are used as biopesticides for pest control. They have many positive characteristics and are able to survive at sites of application for a long time, producing new generations of individuals. The occurrence of populations depends on many environmental parameters, such as temperature, moisture, soil texture, and pH. Extreme temperatures result in a decrease in the survival rate and infectivity of EPNs. Both high humidity and acidic soil pH reduce populations and disrupt the biological activity of EPNs. Nematodes are also exposed to anthropogenic agents, such as heavy metals, oil, gasoline, and even essential oils. These limit their ability to move in the soil, thereby reducing their chances of successfully finding a host. Commonly used fertilizers and chemical pesticides are also a challenge. They reduce the pathogenicity of EPNs and negatively affect their reproduction, which reduces the population size. Biotic factors also influence nematode biology. Fungi and competition limit the reproduction and survival of EPNs in the soil. Host availability enables survival and affects infectivity. Knowledge of the influence of environmental factors on the biology of EPNs will allow more effective use of the insecticidal capacity of these organisms.

18.
Insects ; 15(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38921153

RESUMEN

The sweetpotato whitefly, Bemisia tabaci MEAM1, is a pest known to significantly impact tomato development and yields through direct damage and virus transmission. To manage this pest, the current study compared the effectiveness of various insecticide rotations. Field trials included rotations involving synthetic insecticides, biochemicals, and microbial agents, applied according to their highest labeled concentrations. The results indicated that while standard synthetic insecticides consistently reduced whitefly egg and nymph counts significantly, microbial biopesticide rotations also achieved reductions, although less consistently. This study demonstrated that while traditional chemical treatments remain highly effective, microbial biopesticides containing Beauveria bassiana and Cordyceps javanica present a viable alternative to manage MEAM1 in tomato fields. The data generated in this study provided baseline information for further investigations to determine the potential for optimizing integrated pest management (IPM) and insecticide resistance management (IRM) strategies by incorporating microbial biopesticides in rotations with a variety of modes of action to sustainably manage B. tabaci MEAM1 populations in agricultural settings.

19.
Plants (Basel) ; 13(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931050

RESUMEN

Harlequin bug (Murgantia histrionica) poses a significant threat to cruciferous vegetable crops, leading to economic losses and challenges in sustainable agriculture. This 2-year field study evaluated the efficacy of exclusion netting and selected biopesticides in controlling harlequin bug populations in a field-grown broccoli crop. Treatments included an untreated control, industry standards Azera and Entrust, and ProtekNet mesh netting. Additionally, three commercial essential oil treatments including Essentria IC-3, Nature-Cide, and Zero Tolerance were tested along with two bokashi fermented composting products BrewKashi and Oriental Herbal Nutrient (OHN). During both the first and second year of the study, none of the commercially produced essential oil products or bokashi products were effective in controlling harlequin bug or preventing leaf scars. Conversely, ProtekNet consistently provided the highest level of protection against harlequin bugs of all stages as well as leaf damage scars; it also provided the largest broccoli head width and highest yield. Entrust showed similar results compared to ProtekNet, both with the control of harlequin bug life stages and with leaf scars. These findings indicate that both ProtekNet and Entrust are effective organic alternatives for managing harlequin bug on broccoli, while the selected essential oil and bokashi products do not appear to be effective.

20.
Pestic Biochem Physiol ; 202: 105963, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879311

RESUMEN

The long-term use of pesticides in the field, and the high fertility and adaptability of phytophagous mites have led to resistance problems; consequently, novel safe and efficient active substances are necessary to broaden the tools of pest mite control. Natural enemies of arthropods typically secrete substances with paralytic or lethal effects on their prey, and those substances are a resource for future biopesticides. In this study, two putative venom peptide genes were identified in a parasitic mite Neoseiulus barkeri transcriptome. Recombinant venom NbSP2 peptide injected into Tetranychus cinnabarinus mites was significantly more lethal than recombinant NBSP1. NbSP2 was also lethal to Spodoptera litura when injected but not when fed to third instar larvae. The interaction proteins of NbSP2 in T. cinnabarinus and S. litura were identified by affinity chromatography. Among these proteins, ATP synthase subunit ß (ATP SSß) was deduced as a potential target. Four binding sites were predicted between NBSP2 and ATP SSß of T. cinnabarinus and S. litura. In conclusion, we identified a venom peptide with activity against T. cinnabarinus and S. litura. This study provides a novel component for development of a new biological pesticide.


Asunto(s)
Péptidos , Venenos de Araña , Animales , Venenos de Araña/química , Venenos de Araña/genética , Péptidos/farmacología , Péptidos/química , Ácaros/efectos de los fármacos , Spodoptera/efectos de los fármacos , Tetranychidae/efectos de los fármacos , Tetranychidae/genética , Control Biológico de Vectores/métodos , Secuencia de Aminoácidos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/química , Conducta Predatoria/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA