Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(3): 4767-4774, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35014247

RESUMEN

Natural compound eyes endow arthropods with wide-field high-performance light-harvesting capability that enables them to capture prey and avoid natural enemies in dim light. Inspired by natural compound eyes, a curved artificial-compound-eye (cACE) photodetector for diffused light harvesting is proposed and fabricated, and its light-harvesting capability is systematically investigated. The cACE photodetector is fabricated by introducing a cACE as a light-harvesting layer on the surface of a silicon-based photodetector, with the cACE being prepared via planar artificial-compound-eye (pACE) template deformation. The distinctive geometric morphology of the as-prepared cACE effectively reduces its surface reflection and the dependence of the projected area on the incident light direction, thereby significantly improving the light-harvesting ability and output photocurrent of the silicon-based photodetector. Furthermore, the performances of cACE, pACE, and bare polydimethylsiloxane (PDMS)-attached photodetectors as diffused light detectors are investigated under different luminances. The cACE-photodetector output photocurrent is 1.395 and 1.29 times those of the bare PDMS-attached and pACE photodetectors, respectively. Moreover, this photodetector has a desirable geometric shape. Thus, the proposed cACE photodetector will facilitate development of high-performance photodetectors for luminance sensing.


Asunto(s)
Materiales Biocompatibles/química , Ojo Compuesto de los Artrópodos/química , Luz , Animales , Difusión , Ensayo de Materiales , Tamaño de la Partícula
2.
ACS Appl Mater Interfaces ; 12(9): 10107-10117, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32046483

RESUMEN

Natural compound eyes provide the inspiration for developing artificial optical devices that feature a large field of view (FOV). However, the imaging ability of artificial compound eyes is generally based on the large number of ommatidia. The lack of a tunable imaging mechanism significantly limits the practical applications of artificial compound eyes, for instance, distinguishing targets at different distances. Herein, we reported zoom compound eyes that enable variable-focus imaging by integrating a deformable poly(dimethylsiloxane) (PDMS) microlens array (MLA) with a microfluidic chamber. The thin and soft PDMS MLA was fabricated by soft lithography using a hard template prepared by a combined technology of femtosecond laser processing and wet etching. As compared with other mechanical machining strategies, our combined technology features high flexibility, efficiency, and uniformity, as well as designable processing capability, since the size, distribution, and arrangement of the ommatidia can be well controlled during femtosecond laser processing. By tuning the volume of water injected into the chamber, the PDMS MLA can deform from a planar structure to a hemispherical shape, evolving into a tunable compound eye of variable FOV up to 180°. More importantly, the tunable chamber can functionalize as the main zoom lens for tunable imaging, which endows the compound eye with the additional capability of distinguishing targets at different distances. Its focal length can be turned from 3.03 mm to infinity with an angular resolution of 3.86 × 10-4 rad. This zoom compound eye combines the advantages of monocular eyes and compound eyes together, holding great promise for developing advanced micro-optical devices that enable large FOV and variable-focus imaging.


Asunto(s)
Ojo Compuesto de los Artrópodos/química , Dispositivos Ópticos , Animales , Biomimética , Ojo Compuesto de los Artrópodos/fisiología , Diseño de Equipo , Ojo Artificial , Insectos/fisiología , Rayos Láser
3.
ACS Appl Mater Interfaces ; 11(37): 34507-34516, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31453679

RESUMEN

Fabrication of a hierarchical macro-/micro-/nano compound eye is presented in this paper. This bioinspired compound (BIC) eye is obtained by an integrated manufacturing technology that combines (i) nanoimprinting, (ii) picosecond laser swelling, and (iii) air-assisted deformation. The diameter and height of nanopillars, microlens, and macrobase can be controlled precisely by fine-tuning the process parameters. The multifunctional properties of the BIC eye, such as superhydrophobicity, antireflection, and other optical characteristics, are investigated. It is found that the microlens with nanopillars can effectively improve the surface wettability with a contact angle of 152° and contact angle hysteresis of 12°, and enhance transmittance by 2% over the wavelength range of 200-1200 nm. Moreover, the final hierarchical compound eye exhibits the excellent imaging properties and a wide field-of-view of 120° without distortion. These multifunctional properties will enable the widespread application of the compound eye in diverse real-time environmental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA