Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 872, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39294576

RESUMEN

Nilgirianthus ciliatus, extensively exploited for its pharmacological properties, is now classified as vulnerable. In vitro micropropagation offers a sustainable approach for ecological conservation and rational utilization of this biodiversity resource. This study aimed to reduce endophytes during in vitro propagation and isolating antimicrobial-resistant endophytes from N. ciliatus by employing various concentrations and exposure times of Plant Preservative Mixture (PPM). Optimal results were observed when nodal explants treated with 0.3% PPM for 8 h, followed by inoculation in Murashige and Skoog (MS) medium supplemented with 3 mg/L 6-benzylaminopurine (BAP) and 0.3% PPM. This protocol achieved 82% shoot regeneration with minimal endophytic contamination, suggesting that the duration of explant exposure to PPM significantly influences endophyte reduction. Two antimicrobial-resistant endophytes were isolated and identified as Bacillus cereus and Acinetobacter pittii through 16S rDNA sequencing. These endophytes exhibited plant growth-promoting characteristics, including amylolytic, proteolytic, lipolytic activities, indole-3-acetic acid production, phosphate solubilization, and stress tolerance. In vivo application of these endophytes as bioinoculants to N. ciliatus not only improved growth parameters but also significantly increased the levels of pharmacologically important compounds, squalene, and stigmasterol, as confirmed by High-performance thin-layer chromatography (HPTLC). This study demonstrates that PPM is a promising alternative for sustainable micropropagation of N. ciliatus. Furthermore, it highlights the potential of antimicrobial-resistant endophytes as bioinoculants to improve growth and medicinal value, offering a sustainable solution for conservation and large-scale cultivation of this species.


Asunto(s)
Endófitos , Endófitos/fisiología , Regeneración/efectos de los fármacos , Metabolismo Secundario/efectos de los fármacos , Antiinfecciosos/farmacología
2.
Heliyon ; 10(16): e36548, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39262988

RESUMEN

Synthetic microbial communities, which simplify the complexity of natural ecosystems while retaining their key features, are gaining momentum in engineering and biotechnology applications. One potential application is the development of bioinoculants, offering an eco-friendly, sustainable solution to promote plant growth and increase resilience to abiotic stresses amidst climate change. A potential source for stress-tolerant microbes is those associated with desert plants, evolved and shaped by selective pressures to promote host health under harsh environmental conditions. In our research, we aim to design and develop synthetic microbial consortia inspired by the natural microbiota of four desert plants native to the Arabian Peninsula, inferred from our previous work identifying the structure and predicting the function of these microbial communities using high throughput eDNA barcoding. To obtain culturable microbes that are manageable and traceable yet still representative of natural microbial communities, we combined multiple experimental protocols coupled with compatibility and synergy assessments, along with in planta testing. We isolated a total of 75 bacteria and conducted detailed biological evaluations, revealing that an overwhelming majority (84 %) of all isolates produced indole acetic acid (IAA), with 73 % capable of solubilizing phosphate, 60 % producing siderophores, 47 % forming biofilms, and 35 % producing ACC deaminase, all contributing to plant growth and stress tolerance. We constructed four synthetic microbial consortia, named EcoBiomes, consisting of synergistic combinations of multiple species that can co-exist without significant antagonism. Our preliminary data indicate that EcoBiomes enhance the resilience of heterologous host plants under simulated environmental stresses, including drought, heat, and salinity. EcoBiomes offer a unique, sustainable, and eco-friendly solution to mitigate the impact of climate change on sensitive ecosystems, ultimately affecting global food security.

3.
Heliyon ; 10(17): e36718, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281591

RESUMEN

Plant growth-promoting bacteria (PGPB) are of increased interest as they offer sustainable alternatives to the more common chemical fertilisers. Research, however, has increased into the use of PGPB as bioinoculants to improve yields. Legumes are known to interact with diazotroph PGPB which increase nutrient uptake, prevent pathogenic infections, and actively fix nitrogen. This study aimed to comprehensively describe PGPB associated with legumes grown in Namibia through analysis of the site-specific bacterial microbiomes. In the present study, we used the 16S rRNA sequencing approach to determine the structure of rhizosphere, root, and seed endosphere microbiomes of five drought-tolerant legume species: Macrotyloma uniflorum, Vigna radiata, Vigna aconitifolia, Vigna unguiculata and Lablab purpureus. Several important phyla were identified including Actinobacteriota, Bacteroidota, Firmicutes, Proteobacteria and Verrucomicrobiota. Overall, Proteobacteria was the most abundant phylum followed by Actinobacteria. The most important genera identified were Bacillus, Mesorhizobium, Pseudomonas, Bradyrhizobium and the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium group. The relative abundance of these genera varied across sample types and legume species. This study identified important diazotrophs across all the legume species. Bacillus, an important PGPB, was found to be the most abundant genus among all the niches analysed and legume species, while Rhizobium spp. was particularly enriched in roots. This study ultimately provides previously undescribed information on legume-associated bacterial communities in Namibia.

4.
ISME Commun ; 4(1): ycae104, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39188310

RESUMEN

Controlled greenhouse studies have shown the numerous ways that soil microbes can impact plant growth and development. However, natural soil communities are highly complex, and plants interact with many bacterial and fungal taxa simultaneously. Due to logistical challenges associated with manipulating more complex microbiome communities, how microbial communities impact emergent patterns of plant growth therefore remains poorly understood. For instance, do the interactions between bacteria and fungi generally yield additive (i.e. sum of their parts) or nonadditive, higher order plant growth responses? Without this information, our ability to accurately predict plant responses to microbial inoculants is weakened. To address these issues, we conducted a meta-analysis to determine the type (additive or higher-order, nonadditive interactions), frequency, direction (positive or negative), and strength that bacteria and mycorrhizal fungi (arbuscular and ectomycorrhizal) have on six phenotypic plant growth responses. Our results demonstrate that co-inoculations of bacteria and mycorrhizal fungi tend to have positive additive effects on many commonly reported plant responses. However, ectomycorrhizal plant shoot height responds positively and nonadditively to co-inoculations of bacteria and ectomycorrhizal fungi, and the strength of additive effects also differs between mycorrhizae type. These findings suggest that inferences from greenhouse studies likely scale to more complex field settings and that inoculating plants with diverse, beneficial microbes is a sound strategy to support plant growth.

5.
Front Plant Sci ; 15: 1422504, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015292

RESUMEN

Abiotic stresses, especially drought stress and salt stress in crop plants are accelerating due to climate change. The combined impact of drought and salt is anticipated to lead to the loss of up to 50% of arable land globally, resulting in diminished growth and substantial yield losses threatening food security. Addressing the challenges, agriculture through sustainable practices emerges as a potential solution to achieve Zero Hunger, one of the sustainable development goals set by the IUCN. Plants deploy a myriad of mechanisms to effectively address drought and salt stress with phytohormones playing pivotal roles as crucial signaling molecules for stress tolerance. The phytohormone auxin, particularly indole acetic acid (IAA) emerges as a paramount regulator integral to numerous aspects of plant growth and development. During both drought and salt stress conditions, auxin plays crucial roles for tolerance, but stress-induced processes lead to decreased levels of endogenous free auxin in the plant, leading to an urgent need for auxin production. With an aim to augment this auxin deficiency, several researchers have extensively investigated auxin production, particularly IAA by plant-associated microorganisms, including endophytic bacteria. These endophytic bacteria have been introduced into various crop plants subjected to drought or salt stress and potential isolates promoting plant growth have been identified. However, post-identification, essential studies on translational research to advance these potential isolates from the laboratory to the field are lacking. This review aims to offer an overview of stress tolerant auxin-producing endophytic bacterial isolates while identifying research gaps that need to be fulfilled to utilize this knowledge for the formulation of crop-specific and stress-specific endophyte bioinoculants for the plant to cope with auxin imbalance occurring during these stress conditions.

6.
Plant Signal Behav ; 19(1): 2365574, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38912872

RESUMEN

The potential of rhizobacteria with plant growth promoting (PGP) traits in alleviating abiotic stresses, especially drought, is significant. However, their exploitation in the semi-arid regions of Ethiopian soils remains largely unexplored. This research aimed to isolate and evaluate the PGP potential of bacterial isolates collected from groundnut cultivation areas in Ethiopia. Multiple traits were assessed, including phosphate solubilization, indole-3-acetic acid (IAA) production, ammonia production, salt and heavy metal tolerance, drought tolerance, enzyme activities, hydrogen cyanide production, antibiotic resistance, and antagonistic activity against fungal pathogens. The identification of potent isolates was carried out using MALDI-TOF MS. Out of the 82 isolates, 63 were gram-negative and 19 were gram-positive. Among them, 19 isolates exhibited phosphate solubilization, with AAURB 34 demonstrating the highest efficiency, followed by AURB 12. Fifty-six isolates produce IAA in varying amounts and all isolates produce ammonia with AAURB12, AAURB19, and AAURB34 displaying strong production. Most isolates demonstrated tolerance to temperatures up to 40°C and salt concentrations up to 3%. Notably, AAURB12 and AAURB34 exhibited remarkable drought tolerance at an osmotic potential of -2.70 Mpa. When subjected to levels above 40%, the tested isolates moderately produced lytic enzymes and hydrogen cyanide. The isolates displayed resistance to antibiotics, except gentamicin, and all isolates demonstrated resistance to zinc, with 81-91% showing resistance to other heavy metals. AAURB34 and AAURB12 exhibited suppression against fungal pathogens, with percent inhibition of 38% and 46%, respectively. Using MALDI-TOF MS, the promising PGP isolates were identified as Bacillus megaterium, Bacillus pumilus, and Enterobacter asburiae. This study provides valuable insights into the potential of rhizobacteria as PGP agents for mitigating abiotic stresses and contribute to the understanding of sustainable agricultural practices in Ethiopia and similar regions facing comparable challenges.


Asunto(s)
Rizosfera , Microbiología del Suelo , Etiopía , Estrés Fisiológico , Ácidos Indolacéticos/metabolismo , Sequías , Suelo/química , Arachis/microbiología , Arachis/crecimiento & desarrollo , Arachis/metabolismo , Bacterias/metabolismo
7.
Sci Total Environ ; 927: 172204, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580128

RESUMEN

Agriculture stands as a thriving enterprise in India, serving as both the bedrock of economy and vital source of nutrition. In response to the escalating demands for high-quality food for swiftly expanding population, agricultural endeavors are extending their reach into the elevated terrains of the Himalayas, tapping into abundant resources for bolstering food production. Nonetheless, these Himalayan agro-ecosystems encounter persistent challenges, leading to crop losses. These challenges stem from a combination of factors including prevailing frigid temperatures, suboptimal farming practices, unpredictable climatic shifts, subdivided land ownership, and limited resources. While the utilization of chemical fertilizers has been embraced to enhance the quality of food output, genuine concerns have arisen due to the potential hazards they pose. Consequently, the present investigation was initiated with the objective of formulating environmentally friendly and cold-tolerant broad ranged bioinoculants tailored to enhance the production of Kidney bean while concurrently enriching its nutrient content across entire hilly regions. The outcomes of this study unveiled noteworthy advancements in kidney bean yield, registering a substantial increase ranging from 12.51 ± 2.39 % to 14.15 ± 0.83 % in regions of lower elevation (Jeolikote) and an even more remarkable surge ranging from 20.60 ± 3.03 % to 29.97 ± 5.02 % in higher elevated areas (Chakrata) compared to the control group. Furthermore, these cold-tolerant bioinoculants exhibited a dual advantage by fostering the enhancement of essential nutrients within the grains and fostering a positive influence on the diversity and abundance of microbial life in the rhizosphere. As a result, to effectively tackle the issues associated with chemical fertilizers and to achieve sustainable improvements in both the yield and nutrient composition of kidney bean across varying elevations, the adoption of cold-tolerant Enterobacter hormaechei CHM16, and Pantoea agglomerans HRM 23, including the consortium, presents a promising avenue. Additionally, this study has contributed significant insights-into the role of organic acids like oxalic acid in the solubilization of nutrients, thereby expanding the existing knowledge in this specialized field.


Asunto(s)
Biofortificación , Frío , Rizosfera , India , Phaseolus/fisiología , Agricultura/métodos , Altitud , Microbiología del Suelo , Productos Agrícolas
8.
Plants (Basel) ; 13(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611483

RESUMEN

Milpa is an agroecological production system based on the polyculture of plant species, with corn featuring as a central component. Traditionally, the milpa system does not require the application of chemicals, and so pest attacks and poor growth in poor soils can have adverse effects on its production. Therefore, the application of bioinoculants could be a strategy for improving crop growth and health; however, the effect of external inoculant agents on the endemic microbiota associated with corn has not been extensively studied. Here, the objective of this work was to fertilize a maize crop under a milpa agrosystem with the PGPR Pseudomonas fluorescens UM270, evaluating its impact on the diversity of the rhizosphere (rhizobiome) and root endophytic (root endobiome) microbiomes of maize plants. The endobiome of maize roots was evaluated by 16S rRNA and internal transcribed spacer region (ITS) sequencing, and the rhizobiome was assessed by metagenomic sequencing upon inoculation with the strain UM270. The results showed that UM270 inoculation of the rhizosphere of P. fluorescens UM270 did not increase alpha diversity in either the monoculture or milpa, but it did alter the endophytic microbiome of maize plant roots by stimulating the presence of bacterial operational taxonomic units (OTUs) of the genera Burkholderia and Pseudomonas (in a monoculture), whereas, in the milpa system, the PGPR stimulated greater endophytic diversity and the presence of genera such as Burkholderia, Variovorax, and N-fixing rhizobia genera, including Rhizobium, Mesorhizobium, and Bradyrhizobium. No clear association was found between fungal diversity and the presence of strain UM270, but beneficial fungi, such as Rizophagus irregularis and Exophiala pisciphila, were detected in the Milpa system. In addition, network analysis revealed unique interactions with species such as Stenotrophomonas sp., Burkholderia xenovorans, and Sphingobium yanoikuyae, which could potentially play beneficial roles in the plant. Finally, the UM270 strain does not seem to have a strong impact on the microbial diversity of the rhizosphere, but it does have a strong impact on some functions, such as trehalose synthesis, ammonium assimilation, and polyamine metabolism. The inoculation of UM270 biofertilizer in maize plants modifies the rhizo- and endophytic microbiomes with a high potential for stimulating plant growth and health in agroecological crop models.

9.
Front Microbiol ; 15: 1280848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384267

RESUMEN

Phosphorus (P) deficiency is a common problem in croplands where phosphate-based fertilizers are regularly used to maintain bioavailable P for plants. However, due to their limited mobility in the soil, there has been an increased interest in microorganisms that can convert insoluble P into a bioavailable form, and their use to develop phosphate-solubilizing bioinoculants as an alternative to the conventional use of P fertilizers. In this study, we proposed two independent experiments and explored two entirely different habitats to trap phosphate-solubilizing bacteria (PSBs). In the first experiment, PSBs were isolated from the rhizoplane of native plant species grown in a rock-phosphate (RP) mining area. A subset of 24 bacterial isolates from 210 rhizoplane morphotypes was selected for the inorganic phosphate solubilizing activities using tricalcium phosphate (TCP) as the sole P source. In the second experiment, we proposed an innovative experimental setup to select mycohyphospheric bacteria associated to arbuscular mycorrhizal fungal hyphae, indigenous of soils where agronomic plant have been grown and trapped in membrane bag filled with RP. A subset of 25 bacterial isolates from 44 mycohyphospheric morphotypes was tested for P solubilizing activities. These two bacterial subsets were then screened for additional plant growth-promoting (PGP) traits, and 16S rDNA sequencing was performed for their identification. Overall, the two isolation experiments resulted in diverse phylogenetic affiliations of the PSB collection, showing only 4 genera (24%) and 5 species (17%) shared between the two communities, thus underlining the value of the two protocols, including the innovative mycohyphospheric isolate selection method, for selecting a greater biodiversity of cultivable PSB. All the rhizoplane and mycohyphospheric PSB were positive for ammonia production. Indol-3-acetic acid (IAA) production was observed for 13 and 20 isolates, respectively among rhizoplane and mycohyphospheric PSB, ranging, respectively, from 32.52 to 330.27 µg mL-1 and from 41.4 to 963.9 µg mL-1. Only five rhizoplane and 12 mycohyphospheric isolates were positively screened for N2 fixation. Four rhizoplane PSB were identified as siderophore producers, while none of the mycohyphospheric isolates were. The phenotype of one PSB rhizoplane isolate, assigned to Pseudomonas, showed four additive PGP activities. Some bacterial strains belonging to the dominant genera Bacillus and Pseudomonas could be considered potential candidates for further formulation of biofertilizer in order to develop bioinoculant consortia that promote plant P nutrition and growth in RP-enriched soils.

10.
Biol Futur ; 74(4): 545-556, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995047

RESUMEN

As an alternative to harmful chemical fertilizers and toward fulfilling Sustainable Development Goals (SDGs) of the United Nations, growth promoting rhizobacterial bioinoculants, emerged as potential players. These act in multifunctional ways, including seed colonization, seed germination, stress tolerance and many more, leading to proper growth and development of plants. Biopriming seeds with these beneficial multi-trait microbes is an effective way to introduce them in the soil, and this is an example of bottom-up approach of rhizosphere engineering. Using such sustainable approach is promising and, to investigate and analyze, their research trends are of prime importance. Thus, data were retrieved using Lens and Scopus databases and used for patent landscaping and citation network analysis, respectively. For patent landscaping, documents obtained using customized keyword search were broadly from the past 35 years (1987-2022) and yielded 114 patents which were manually curated in title, abstract and claims (TAC). From the year 2000, interest in this area was observed which further gained momentum from the year 2008, and a maximum peak was observed in the year 2021. Patent profile (filed, granted and published) showed an upward trend during this tenure (1987-2022). In this research article, we aim to provide an overview of current research in this field, identify research hotspots, project future development prospects and make recommendations for further research. Patent landscaping and citation network analysis were used to analyze the recent trends in biopriming approaches using microbial bioinoculants for the first time to identify progress and hotspots in the field of seed priming with PGPRs.


Asunto(s)
Inoculantes Agrícolas , Agricultura , Plantas/microbiología , Suelo , Semillas
11.
Plants (Basel) ; 12(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37836181

RESUMEN

Salinity is one of the most devastating abiotic stresses hampering the growth and production of rice. Nine indole-3-acetic acid (IAA)-producing salt-tolerant plant-growth-promoting rhizobacteria (ST-PGPR) were inoculated into Thai jasmine rice (Oryza sativa L.) variety Khao Dawk Mali 105 (KDML105) seedlings grown under different concentrations of NaCl (0, 50, 100, and 150 mM). The ST-PGPR strains significantly promoted the growth parameters, chlorophyll content, nutrient uptake (N, P, K, Ca, and Mg), antioxidant activity, and proline accumulation in the seedlings under both normal and saline conditions compared to the respective controls. The K+/Na+ ratio of the inoculated seedlings was much higher than that of the controls, indicating greater salt tolerance. The most salt-tolerant and IAA-producing strain, Sinomonas sp. ORF15-23, yielded the highest values for all the parameters, particularly at 50 mM NaCl. The percentage increases in these parameters relative to the controls ranged from >90% to 306%. Therefore, Sinomonas sp. ORF15-23 was considered a promising ST-PGPR to be developed as a bioinoculant for enhancing the growth, salt tolerance, and aroma of KDML105 rice in salt-affected areas. Environmentally friendly technologies such as ST-PGPR bioinoculants could also support the sustainability of KDML105 geographical indication (GI) products. However, the efficiency of Sinomonas sp. ORF15-23 should be evaluated under field conditions for its effect on rice nutrient uptake and growth, including the 2AP level.

12.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895028

RESUMEN

In this work, we present the results of the inoculation of canola seeds (Brassica napus L.) with Trichoderma viride strains that promote the growth of plants. Seven morphologically different strains of T. viride (TvI-VII) were shown to be capable of synthesizing auxins and exhibited cellulolytic and pectinolytic activities. To gain a deeper insight into the molecular mechanisms underlying canola-T. viride interactions, we analyzed the canola stress genes metallothioneins (BnMT1-3) and stringent response genes (BnRSH1-3 and BnCRSH). We demonstrated the presence of cis-regulatory elements responsive to fungal elicitors in the promoter regions of B. napus MT and RSH genes and observed changes in the levels of the transcripts of the above-mentioned genes in response to root colonization by the tested fungal strains. Of the seven tested strains, under laboratory conditions, T. viride VII stimulated the formation of roots and the growth of canola seedlings to the greatest extent. An experiment conducted under field conditions during drought showed that the inoculation of canola seeds with a suspension of T. viride VII spores increased yield by 16.7%. There was also a positive effect of the fungus on the height and branching of the plants, the number of siliques, and the mass of a thousand seeds. We suggest that the T. viride strain TvVII can be used in modern sustainable agriculture as a bioinoculant and seed coating to protect B. napus from drought.


Asunto(s)
Brassica napus , Hypocreales , Brassica napus/metabolismo , Sequías , Plantones/genética
13.
Heliyon ; 9(9): e19487, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37662754

RESUMEN

Over the past half century, limited use of synthetic fertilizers, pesticides, and conservation of the environment and natural resources have become the interdependent goals of sustainable agriculture. These practices support agriculture sustainability with less environmental and climatic impacts. Therefore, there is an upsurge in the need to introduce compatible booster methods for maximizing net production. The best straightforward strategy is to explore and utilize plant-associated beneficial microorganisms and their products. Bioinoculants are bioformulations consisting of selected microbial strains on a suitable carrier used in the enhancement of crop production. Fungal endophytes used as bioinoculants confer various benefits to the host, such as protection against pathogens by eliciting immune response, mineralization of essential nutrients, and promoting plant growth. Besides, they also produce various bioactive metabolites, phytohormones, and volatile organic compounds. To design various bioformulations, transdisciplinary approaches like genomics, transcriptomics, metabolomics, proteomics, and microbiome modulation strategies like gene editing and metabolic reconstruction have been explored. These studies will refine the existing knowledge on the diversity, phylogeny and beneficial traits of the microbes. This will also help in synthesizing microbial consortia by evaluating the role of structural and functional elements of communities in a controlled manner. The present review summarizes the beneficial aspects associated with fungal endophytes for capitalizing agricultural outputs, enlists various multi-omics techniques for understanding and modulating the mechanism involved in endophytism and the generation of new bioformulations for providing novel solutions for the enhancement of crop production.

14.
Appl Microbiol Biotechnol ; 107(21): 6553-6571, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37688595

RESUMEN

The Big Grain1 (BG1) gene of rice (Oryza sativa L.) is reported to increase the yield of rice crops; however, its molecular mechanism is largely concealed. To explore its functional prospects, we have taken a structure-function-based approach. In silico analyses suggest OsBG1 is a DNA- and phytohormone-binding protein. Heterologous expression of OsBG1 with galactose-inducible promoter GAL1p in the rhizospheric yeast Candida tropicalis SY005 revealed 7.9- and 1.5-fold higher expression of the gene at 12 and 24 h, respectively, compared to the expression at 36 h post-galactose induction. Functional activity of the induced OsBG1 in engineered yeast increased cell density, specific growth rate, and biomass by 28.5%, 29.8%, and 14.1%, respectively, and decreased the generation time by 21.25%. Flow cytometry-based cell cycle analysis of OsBG1-expressing yeast cells exhibited an increase in the cells of the G2/M population by 15.8% after 12 h of post-galactose induction. The gene expression study of yeast transformants disclosed that OsBG1 regulates cell division by upregulating the expression of the endogenous gene cyclin B1 (CtCYB1) by 1.3- and 1.9-folds at 10 and 12 h, respectively, compared to the control, and is positively influenced by the phytohormone indole acetic acid (IAA). Further, the study revealed that OsBG1 significantly increases biofilm formation, stress tolerance, and IAA production in C. tropicalis SY005, implying its prospective role in enhancing plant growth-promoting traits in microbes. OsBG1-expressing rhizospheric yeast cells significantly improved the germination and growth parameters of the bio-inoculated rice seeds. Altogether, this study suggests OsBG1 can be employed to genetically improve suitable bio-inoculants for their plant growth-promoting traits to augment crop productivity. KEY POINTS: • In silico analyses suggested OsBG1 is a phytohormone-binding transcription factor. • OsBG1 enhanced growth in rhizospheric Candida tropicalis by upregulating CtCYB1. • OsBG1 improved plant growth-promoting traits of the rhizospheric yeast C. tropicalis.


Asunto(s)
Oryza , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Candida tropicalis/genética , Candida tropicalis/metabolismo , Biomasa , Galactosa/metabolismo , Levaduras/metabolismo
15.
Front Microbiol ; 14: 1210890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601386

RESUMEN

Plant-associated microbes include taxonomically diverse communities of bacteria, archaebacteria, fungi, and viruses, which establish integral ecological relationships with the host plant and constitute the phyto-microbiome. The phyto-microbiome not only contributes in normal growth and development of plants but also plays a vital role in the maintenance of plant homeostasis during abiotic stress conditions. Owing to its immense metabolic potential, the phyto-microbiome provides the host plant with the capability to mitigate the abiotic stress through various mechanisms like production of antioxidants, plant growth hormones, bioactive compounds, detoxification of harmful chemicals and toxins, sequestration of reactive oxygen species and other free radicals. A deeper understanding of the structure and functions of the phyto-microbiome and the complex mechanisms of phyto-microbiome mediated abiotic stress mitigation would enable its utilization for abiotic stress alleviation of crop plants and development of stress-resistant crops. This review aims at exploring the potential of phyto-microbiome to alleviate drought, heat, salinity and heavy metal stress in crop plants and finding sustainable solutions to enhance the agricultural productivity. The mechanistic insights into the role of phytomicrobiome in imparting abiotic stress tolerance to plants have been summarized, that would be helpful in the development of novel bioinoculants. The high-throughput modern approaches involving candidate gene identification and target gene modification such as genomics, metagenomics, transcriptomics, metabolomics, and phyto-microbiome based genetic engineering have been discussed in wake of the ever-increasing demand of climate resilient crop plants.

16.
Microorganisms ; 11(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37512828

RESUMEN

The persistence of beneficial microorganisms in the rhizosphere or surrounding soil following their application is a prerequisite for the effective interaction with the plant or indigenous microbial communities in the respective habitats. The goal of the study was to analyze the establishment and persistence of the applied beneficial Trichoderma harzianum (OMG16) strain in the maize root-associated soil depending on agricultural practice (soil management practice, N-fertilizer intensity) in a field experiment. A rapid identification of the inoculated strain OMG16 is essential for its monitoring. We used a culture-based approach coupled to matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis for the rapid identification of the inoculated Trichoderma strain as part of the beneficial microbe consortium (BMc). We isolated 428 fungal isolates from eight treatments of the field experiment. Forty eight percent of the isolated fungi equivalent to 205 fungal isolates were identified as Trichoderma, of which 87% (=179 isolates) were obtained from the fields inoculated with BMc. Gene sequence analysis showed a high similarity of the MALDI-TOF MS-identified Trichoderma, with that of the inoculated Trichoderma harzianum OMG16 confirming the re-isolation of the added beneficial fungus. This study highlighted the use of MALDI-TOF MS analysis as a quick, cost-effective detection and efficient monitoring tool for microbial-based bioinoculants in the field.

17.
Front Microbiol ; 14: 1174532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37389335

RESUMEN

Microbial inoculants may be called magical bullets because they are small in size but have a huge impact on plant life and humans. The screening of these beneficial microbes will give us an evergreen technology to manage harmful diseases of cross-kingdom crops. The production of these crops is reducing as a result of multiple biotic factors and among them the bacterial wilt disease triggered by Ralstonia solanacearum is the most important in solanaceous crops. The examination of the diversity of bioinoculants has shown that more microbial species have biocontrol activity against soil-borne pathogens. Reduced crop output, lower yields, and greater cost of cultivation are among the major issues caused by diseases in agriculture around the world. It is universally true that soil-borne disease epidemics pose a greater threat to crops. These necessitate the use of eco-friendly microbial bioinoculants. This review article provides an overview of plant growth-promoting microorganisms bioinoculants, their various characteristics, biochemical and molecular screening insights, and modes of action and interaction. The discussion is concluded with a brief overview of potential future possibilities for the sustainable development of agriculture. This review will be useful for students and researchers to obtain existing knowledge of microbial inoculants, their activities, and their mechanisms, which will facilitate the development of environmentally friendly management strategies for cross-kingdom plant diseases.

18.
Plants (Basel) ; 12(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37299094

RESUMEN

In its natural distribution, Araucaria araucana is a plant species usually exposed to extreme environmental constraints such as wind, volcanism, fires, and low rainfall. This plant is subjected to long periods of drought, accentuated by the current climate emergency, causing plant death, especially in its early growth stages. Understanding the benefits that both arbuscular mycorrhizal fungi (AMF) and endophytic fungi (EF) could provide plants under different water regimes would generate inputs to address the above-mentioned issues. Here, the effect of AMF and EF inoculation (individually and combined) on the morphophysiological variables of A. araucana seedlings subjected to different water regimes was evaluated. Both the AMF and EF inocula were obtained from A. araucana roots growing in natural conditions. The inoculated seedlings were kept for 5 months under standard greenhouse conditions and subsequently subjected to three different irrigation levels for 2 months: 100, 75, and 25% of field capacity (FC). Morphophysiological variables were evaluated over time. Applying AMF and EF + AMF yielded a noticeable survival rate in the most extreme drought conditions (25% FC). Moreover, both the AMF and the EF + AMF treatments promoted an increase in height growth between 6.1 and 16.1%, in the production of aerial biomass between 54.3 and 62.6%, and in root biomass between 42.5 and 65.4%. These treatments also kept the maximum quantum efficiency of PSII (Fv/Fm 0.71 for AMF and 0.64 for EF + AMF) stable, as well as high foliar water content (>60%) and stable CO2 assimilation under drought stress. In addition, the EF + AMF treatment at 25% FC increased the total chlorophyll content. In conclusion, using indigenous strains of AMF, alone or in combination with EF, is a beneficial strategy to produce A. araucana seedlings with an enhanced ability to tolerate prolonged drought periods, which could be of great relevance for the survival of these native species under the current climate change.

19.
Front Microbiol ; 14: 1127249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113239

RESUMEN

The increasing demand for food has increased dependence on chemical fertilizers that promote rapid growth and yield as well as produce toxicity and negatively affect nutritional value. Therefore, researchers are focusing on alternatives that are safe for consumption, non-toxic, cost-effective production process, and high yielding, and that require readily available substrates for mass production. The potential industrial applications of microbial enzymes have grown significantly and are still rising in the 21st century to fulfill the needs of a population that is expanding quickly and to deal with the depletion of natural resources. Due to the high demand for such enzymes, phytases have undergone extensive research to lower the amount of phytate in human food and animal feed. They constitute efficient enzymatic groups that can solubilize phytate and thus provide plants with an enriched environment. Phytases can be extracted from a variety of sources such as plants, animals, and microorganisms. Compared to plant and animal-based phytases, microbial phytases have been identified as competent, stable, and promising bioinoculants. Many reports suggest that microbial phytase can undergo mass production procedures with the use of readily available substrates. Phytases neither involve the use of any toxic chemicals during the extraction nor release any such chemicals; thus, they qualify as bioinoculants and support soil sustainability. In addition, phytase genes are now inserted into new plants/crops to enhance transgenic plants reducing the need for supplemental inorganic phosphates and phosphate accumulation in the environment. The current review covers the significance of phytase in the agriculture system, emphasizing its source, action mechanism, and vast applications.

20.
J Environ Manage ; 338: 117779, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023603

RESUMEN

Environmental pollution has become a transnational issue that impacts ecosystems, soil, water, and air and is directly related to human health and well-being. Chromium pollution decreases the development of plant and microbial populations. It warrants the need to remediate chromium-contaminated soil. Decontaminating chromium-stressed soils via phytoremediation is a cost-effective and environmentally benign method. Using multifunctional plant growth-promoting rhizobacteria (PGPR) lower chromium levels and facilitates chromium removal. PGPR work by altering root architecture, secreting chemicals that bind metals in the rhizosphere, and reducing phytotoxicity brought on by chromium. The present study aimed to investigate the chromium bioremediation capacity of metal-tolerant PGPR isolate while promoting the growth of chickpeas in the presence of varying levels of chromium (15.13, 30.26, and 60.52 mg/kg of chromium). The isolate, Mesorhizobium strain RC3, substantially reduced chromium content (60.52 mg/kg) in the soil. It enhanced the root length by 10.87%, the shoot length by 12.38%, the number of nodules by 6.64%, and nodule dry weight by 13.77% at 90 days. After 135 days of sowing, more improvement in the root length (18.05), shoot length (21.60%)the chlorophyll content (6.83%), leghaemoglobin content (9.47%), and the highest growth in the crop seed yield (27.45%) and crop protein content (16.83%)The isolate reduced chromium accumulation in roots, shoots, and grains chickpea. Due to chromium bioremediation and its plant growth-promoting and chromium-attenuating qualities, Mesorhizobium strain RC3 could be used as a green bioinoculant for plant growth promotion under chromium stress.


Asunto(s)
Cicer , Mesorhizobium , Contaminantes del Suelo , Humanos , Cromo , Suelo/química , Cicer/microbiología , Ecosistema , Contaminantes del Suelo/toxicidad , Raíces de Plantas , Microbiología del Suelo , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA