Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Environ Res ; 262(Pt 2): 119931, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260717

RESUMEN

Soil health is integral to sustainable agroecosystem management. Current monitoring and assessment practices primarily focus on soil physicochemical properties, yet the perspective of multitrophic biodiversity remains underexplored. Here we used environmental DNA (eDNA) technology to monitor multitrophic biodiversity in four typical agroecosystems, and analyzed the species composition and diversity changes in fungi, bacteria and metazoan, and combined with the traditional physicochemical variables to establish a soil health assessment framework centered on biodiversity data. First, eDNA technology detected rich multitrophic biodiversity in four agroecosystems, including 100 phyla, 273 classes, 611 orders, 1026 families, 1668 genera and 1146 species with annotated classification, and the relative sequence abundance of dominant taxa fluctuates tens of times across agroecosystems. Second, significant differences in soil physicochemical variables such as organic matter (OM), total nitrogen (TN) and available phosphorus (AP) were observed among different agroecosystems, nutrients were higher in cropland and rice paddies, while heavy metals were higher in fish ponds and lotus ponds. Third, biodiversity metrics, including α and ß diversity, also showed significant changes across agroecosystems, the soil biota was generally more sensitive to nutrients (e.g., OM, TN or AP), while the fungal communities were mainly affected by heavy metals in October (e.g., Cu and Cr). Finally, we screened 48 sensitive organismal indicators and found significant positive consistency between the developed eDNA indices and the traditional soil quality index (SQI, reaching up to R2 = 0.58). In general, this study demonstrated the potential of eDNA technology in soil health assessment and underscored the importance of a multitrophic perspective for efficient monitoring and managing agroecosystems.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39196323

RESUMEN

It is essential to determine the dominant/indicator species and their ecological preferences to develop a comprehensive bioassessment strategy for rivers. The objective of this work was to provide dependable ecological evaluation techniques for ecosystems that experience significant human-induced disruptions, with the Hari Rud River (a transboundary water resource) serving as a case study during the May (wet) and July (dry) periods of 2023. Canonical correspondence analysis revealed that electrical conductivity (EC), dissolved oxygen, ortho-phosphate (P O 4 3 - ), and nitrate (N O 3 - ) had substantial impacts on the spatial distribution of diatom species in the basin. Relatively pollution-tolerant species, including Nitzschia brevissima, N. capitellata, N. umbonata, N. palea, N. dissipata, and Navicula cryptocephala, had close relationships with EC and P O 4 3 - , integrated with Joi Injil and Karbar streams. Of the sampling stations, especially Hari Rud River1 and Hari Rud River2, exhibited pollution-sensitive diatom species, Cymbella excisa, Achnanthidium minutissimum, Diatoma moniliformis, Cymbella affinis, and Meridion circulare. Various eco-regional diatom metrics exhibited distinct scores, indicating a range of ecological status from high to bad in the Lower Hari Rud River basin. European diatom indices revealed good ecological status for Hari Rud River 1 and 4, but poor or bad ecological statuses for Joi Injil and Karbar streams. The findings of the current study emphasize the requirements of autecological studies to understand the regional diatom compositions and their ideal survival ranges in different locations before considering using non-regional diatom indices to evaluate the ecological status of lotic systems.

3.
Ecotoxicol Environ Saf ; 283: 116855, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39128453

RESUMEN

Globally, monitoring of the surface waters is largely limited to the physico-chemical analysis of water in rivers and lakes. Sediment state in the aquatic systems including sediment chemical content or the structure and diversity of benthic communities or ecotoxicological studies with natural sediments remains largely overlooked by the monitoring programs. Hence we assessed the potential toxicity of three riverine sediments on the life-cycle traits (emergence and reproduction) of midge Chironomus riparius via an ecotoxicological testing method over two generations (according to OECD test 233 guidelines). In addition, the riverine sediments were spiked with polyamide (nylon) microplastic particles (1 g kg-1) to analyze an additive effect of microplastic on the sediment toxicity. As model river systems, three rivers (Karchaghbyur, Gavaraget, Argichi) in the Lake Sevan basin (Armenia) were selected. Results of ecotoxicity testing were compared with the indices of water quality (derived from the physico-chemical analysis) and the indices of the ecological status of the rivers (derived from the analysis of benthic communities). The results of testing demonstrated an unexpectedly low emergence of midges after the first generation exposed to the sediment of the river having ''good ecological status'' - the Argichi. Sediments of the Karchaghbyur and Gavaraget rivers impeded the emergence and reproduction of midges after the second generation. An addition of polyamide particles to the sediments did not significantly affect the life-cycle traits of C. riparius indicating the primary effect of the sediments' condition. The discrepancy of biotesting result with that of the other two methods (which indicated ''average water quality'' and "good ecological status") underlies the importance of designing more comprehensive monitoring programs for better assessment and protection of aquatic systems and resources.


Asunto(s)
Chironomidae , Monitoreo del Ambiente , Sedimentos Geológicos , Larva , Ríos , Contaminantes Químicos del Agua , Animales , Chironomidae/efectos de los fármacos , Ríos/química , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Microplásticos/toxicidad , Microplásticos/análisis , Calidad del Agua , Reproducción/efectos de los fármacos , Nylons/toxicidad , Lagos/química
4.
Artículo en Inglés | MEDLINE | ID: mdl-38837538

RESUMEN

Habitat plays a crucial role in shaping the macroinvertebrate community structure in large shallow lakes. In the pursuit of improving the health of freshwater ecosystems, it is imperative to consider their habitat characteristics. To evaluate the impact of habitat variations on lake ecological health, we developed a macroinvertebrate-based multimetric index (MMI) for both the pelagic and littoral zones of Lake Hongze. Additionally, we employed structural equation models to explore the influence of utilization or phytoplankton biomass on ecological health. Historical data served as reference conditions for the pelagic. Seven key attributes were selected for the pelagic MMI, that is, Biological Monitoring Working Party (BMWP), the percentage of Mollusca taxa, the percentage of filter-collector taxa, the percentage of predator taxa, the percentage of gather-collector taxa, and the percentage of sensitive taxa and functional dispersion. The least minimally disturbed conditions and the best attainable conditions were used to develop the littoral. Four key metrics, that is, the percentage of scraper abundance, Mollusca taxa, Biological Pollution Index, and BMWP, were integrated into the littoral MMI. The assessment based on MMI revealed a "poor" health status for the pelagic zone and a "fair" health status for the littoral zone. These findings underscore the high applicability and efficacy of MMIs in assessing and monitoring ecological health in Lake Hongze. Notably, functional feeding groups exhibited heightened sensitivity to disturbance in both zones. Moreover, sediment organic matter strongly influenced the pelagic ecological health, while chlorophyll a and transparency emerged as primary factors influencing the littoral zone, attributable to varying littoral zone utilization. Integr Environ Assess Manag 2024;00:1-11. © 2024 SETAC.

5.
Sci Total Environ ; 932: 173115, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734082

RESUMEN

Periphytic protozoa are esteemed icons of microbial fauna, renowned for their sensitivity and role as robust bioindicators, pivotal for assessing ecosystem stress and anthropogenic impacts on water quality. Despite their significance, research exploring the community dynamics of protozoan fauna across diverse water columns and depths in shallow waters has been notably lacking. This is the first study that examines the symphony of protozoan fauna in different water columns at varying depths (1, 2, 3.5 and 5 m), in South China Sea. Our findings reveal that vertical changes and environmental heterogeneity plays pivotal role in shaping the protozoan community structure, with distinct preferences observed in spirotrichea and phyllopharyngea classes at specific depths. Briefly, diversity metrics (i.e., both alpha and beta) showed significantly steady patterns at 2 m and 3.5 m depths as well as high homogeneity in most of the indices was observed. Co-associations between environmental parameters and protozoan communities demonstrated temperature, dissolved oxygen, salinity, and pH, are significant drivers discriminating species richness and evenness across all water columns. Noteworthy variations of the other environmental parameters such as SiO3-Si, PO4--P, and NO2--N at 1 m and NO3--N, and NH4+-N, at greater depths, signal the crucial role of nutrient dynamics in shaping the protozoan communities. Moreover, highly sensitive species like Anteholosticha pulchara, Apokeronopsis crassa, and Aspidisca steini in varying environmental conditions among vertical columns may serve as eco- indicators of water quality. Collectively, this study contributes a thorough comprehension of the fine-scale structure and dynamics of protozoan fauna within marine ecosystems, providing insightful perspectives for ecological and water quality assessment in ever-changing marine environments.


Asunto(s)
Ecosistema , China , Biodiversidad , Monitoreo del Ambiente , Agua de Mar , Organismos Acuáticos
6.
Sci Total Environ ; 939: 173502, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38815829

RESUMEN

Recent advancements in DNA techniques, metabarcoding, and bioinformatics could help expand the use of benthic diatoms in monitoring and assessment programs by providing relatively quick and increasingly cost-effective ways to quantify diatom diversity in environmental samples. However, such applications of DNA-based approaches are relatively new, and in the United States, unknowns regarding their applications at large scales exist because only a few small-scale studies have been done. Here, we present results from the first nationwide survey to use DNA metabarcoding (rbcL) of benthic diatoms, which were collected from 1788 streams and rivers across nine ecoregions spanning the conterminous USA. At the national scale, we found that diatom assemblage structure (1) was strongly associated with total phosphorus and total nitrogen concentrations, conductivity, and pH and (2) had clear patterns that corresponded with differences in these variables among the nine ecoregions. These four variables were strong predictors of diatom assemblage structure in ecoregion-specific analyses, but our results also showed that diatom-environment relationships, the importance of environmental variables, and the ranges of these variables within which assemblage changes occurred differed among ecoregions. To further examine how assemblage data could be used for biomonitoring purposes, we used indicator species analysis to identify ecoregion-specific taxa that decreased or increased along each environmental gradient, and we used their relative abundances of gene reads in samples as metrics. These metrics were strongly correlated with their corresponding variable of interest (e.g., low phosphorus diatoms with total phosphorus concentrations), and generalized additive models showed how their relationships compared among ecoregions. These large-scale national patterns and nine sets of ecoregional results demonstrated that diatom DNA metabarcoding is a robust approach that could be useful to monitoring and assessment programs spanning the variety of conditions that exist throughout the conterminous United States.


Asunto(s)
Código de Barras del ADN Taxonómico , Diatomeas , Monitoreo del Ambiente , Ríos , Diatomeas/genética , Ríos/química , Estados Unidos , Monitoreo del Ambiente/métodos , Biodiversidad
7.
Sci Total Environ ; 935: 173243, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38761946

RESUMEN

Determining biological status of freshwater ecosystems is critical for ensuring ecosystem health and maintaining associated services to such ecosystems. Freshwater macroinvertebrates respond predictably to environmental disturbances and are widely used in biomonitoring programs. However, many freshwater species are difficult to capture and sort from debris or substrate and morphological identification is challenging, especially larval stages, damaged specimens, or hyperdiverse groups such as Diptera. The advent of high throughput sequencing technologies has enhanced DNA barcoding tools to automatise species identification for whole communities, as metabarcoding is increasingly used to monitor biodiversity. However, recent comparisons have revealed little congruence between morphological and molecular-based identifications. Using broad range universal primers for DNA barcode marker cox1, we compare community composition captured between morphological and molecular-based approaches from different sources - tissue-based (bulk benthic and bulk drift samples) and environmental DNA (eDNA, filtered water) metabarcoding - for samples collected along a gradient of anthropogenic disturbances. For comparability, metabarcoding taxonomic assignments were filtered by taxa included in the standardised national biological metric IBMWP. At the family level, bulk benthic metabarcoding showed the highest congruence with morphology, and the most abundant taxa were captured by all techniques. Richness captured by morphology and bulk benthic metabarcoding decreased along the gradient, whereas richness recorded by eDNA remained constant and increased downstream when sequencing bulk drift. Estimates of biological metrics were higher using molecular than morphological identification. At species level, diversity captured by bulk benthic samples were higher than the other techniques. Importantly, bulk benthic and eDNA metabarcoding captured different and complementary portions of the community - benthic versus water column, respectively - and their combined use is recommended. While bulk benthic metabarcoding can likely replace morphology using similar benthic biological indices, water eDNA will require new metrics because this technique sequences a different portion of the community.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Monitoreo del Ambiente , Agua Dulce , Invertebrados , Animales , Invertebrados/genética , Invertebrados/clasificación , Monitoreo del Ambiente/métodos , ADN Ambiental , Ecosistema , Monitoreo Biológico/métodos
8.
Environ Sci Pollut Res Int ; 31(25): 37326-37336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771538

RESUMEN

In order to evaluate the influence of global warming on the ecosystem processes in marine environments, the changes in colonization dynamics of periphytic microbiota were studied using the periphytic ciliate communities as the test organism fauna under a continuous warming gradient of 22℃ (control), 25℃, 28℃, 31℃, and 34 ℃. The results demonstrated that (1) the test ciliate communities generally showed a similar temporal pattern in within the colonization process under the water temperatures from 22 up to 28℃; however, (2) the colonization dynamics were significantly changed, and the fitness of colonization curves to the MacArthur-Wilson model equation was failed under the temperature increased by 6 ℃, and (3) the loading or assimilative capacity of the test aquatic ecosystem was decreased with the increase of water temperature. Therefore, this study suggests that continuous warming may significantly drive the colonization dynamics of periphytic ciliates in marine ecosystems.


Asunto(s)
Cilióforos , Ecosistema , Calentamiento Global , Cilióforos/fisiología , Temperatura
9.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230109, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38705188

RESUMEN

Aquatic insects are a major indicator used to assess ecological condition in freshwater environments. However, current methods to collect and identify aquatic insects require advanced taxonomic expertise and rely on invasive techniques that lack spatio-temporal replication. Passive acoustic monitoring (PAM) is emerging as a non-invasive complementary sampling method allowing broad spatio-temporal and taxonomic coverage. The application of PAM in freshwater ecosystems has already proved useful, revealing unexpected acoustic diversity produced by fishes, amphibians, submerged aquatic plants, and aquatic insects. However, the identity of species producing sounds remains largely unknown. Among them, aquatic insects appear to be the major contributor to freshwater soundscapes. Here, we estimate the potential number of soniferous aquatic insects worldwide using data from the Global Biodiversity Information Facility. We found that four aquatic insect orders produce sounds totalling over 7000 species. This number is probably underestimated owing to poor knowledge of aquatic insects bioacoustics. We then assess the value of sound producing aquatic insects to evaluate ecological condition and find that they might be useful despite having similar responses in pristine and degraded environments in some cases. Both expert and automated identifications will be necessary to build international reference libraries and to conduct acoustic bioassessment in freshwaters. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Asunto(s)
Acústica , Biodiversidad , Agua Dulce , Insectos , Animales , Insectos/fisiología , Organismos Acuáticos/fisiología , Monitoreo del Ambiente/métodos
10.
Sci Total Environ ; 918: 170360, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38311088

RESUMEN

Monitoring programs at sub-national and national scales lack coordination, harmonization, and systematic review and analysis at continental and global scales, and thus fail to adequately assess and evaluate drivers of biodiversity and ecosystem degradation and loss at large spatial scales. Here we review the state of the art, gaps and challenges in the freshwater assessment programs for both the biological condition (bioassessment) and biodiversity monitoring of freshwater ecosystems using the benthic macroinvertebrate community. To assess the existence of nationally- and regionally- (sub-nationally-) accepted freshwater benthic macroinvertebrate protocols that are put in practice/used in each country, we conducted a survey from November 2022 to May 2023. Responses from 110 respondents based in 67 countries were received. Although the responses varied in their consistency, the responses clearly demonstrated a lack of biodiversity monitoring being done at both national and sub-national levels for lakes, rivers and artificial waterbodies. Programs for bioassessment were more widespread, and in some cases even harmonized among several countries. We identified 20 gaps and challenges, which we classed into five major categories, these being (a) field sampling, (b) sample processing and identification, (c) metrics and indices, (d) assessment, and (e) other gaps and challenges. Above all, we identify the lack of harmonization as one of the most important gaps, hindering efficient collaboration and communication. We identify the IUCN SSC Global Freshwater Macroinvertebrate Sampling Protocols Task Force (GLOSAM) as a means to address the lack of globally-harmonized biodiversity monitoring and biological assessment protocols.


Asunto(s)
Biodiversidad , Monitoreo del Ambiente , Agua Dulce , Invertebrados , Invertebrados/fisiología , Animales , Monitoreo del Ambiente/métodos , Ecosistema , Monitoreo Biológico/métodos
11.
Mar Pollut Bull ; 199: 116016, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181473

RESUMEN

Protozoan fauna is playing an important role in the functioning of microbial food webs by transferring the flux of material and energy from low to high tropic levels in marine ecosystems. To assess effects of elevated temperature on the marine ecosystem, periphytic protozoan communities were used as the test microbial fauna, and were incubated in a temperature-controlled circulation system in a successive temperature gradient of 22 (control), 25, 28, 31 and 34 °C. The results showed that: (1) the test microbial fauna was shifted in both species composition and community structure; (2) the average taxonomic distinctness represented a clear decreasing trend, (3) while the variation in taxonomic distinctness significantly increased with increase of water temperature; and (4) the community pattern was significantly departed from an expectation when temperature increased by 12 °C. These results suggested that Protozoa may be used as a useful bioindicator of global warming in marine ecosystems.


Asunto(s)
Cilióforos , Ecosistema , Monitoreo del Ambiente/métodos , Cadena Alimentaria , Biomarcadores Ambientales , Biodiversidad
12.
J Environ Manage ; 352: 120076, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38211428

RESUMEN

It has been proposed that biomonitoring may benefit from the use of metabolomics (the study of all small molecules in an organism) to detect sub-lethal organism stress through changes in the metabolite profile (i.e., the metabolome). However, to integrate the metabolome into biomonitoring programs the amount of natural variability among and within populations of indicator taxa must be established prior to generating a reference condition. This study determined variation in the metabolome among ecoregion and stream of origin in the northern crayfish (Faxonius virilis) and if that variation inhibited detection of stressor effects at sites exposed to human activities. We collected crayfish from seven minimally disturbed streams (i.e., reference streams), distributed across three level II ecoregions in central Canada and compared their metabolomes. We found ecoregion and stream origin were poor predictors of crayfish metabolomes. This result suggests crayfish metabolomes were similar, despite differing environmental conditions. Metabolomes of crayfish collected from three stream sites exposed to agricultural activity and municipal wastewater (i.e., test sites) were then compared to the crayfish metabolomes from the seven reference streams. Findings showed that crayfish metabolomes from test sites were strongly differentiated from those at all reference sites. The consistency in the northern crayfish metabolome at the studied reference streams indicates that a single reference condition may effectively detect impacts of human activities across the sampled ecoregions.


Asunto(s)
Astacoidea , Monitoreo Biológico , Animales , Humanos , Astacoidea/metabolismo , Monitoreo del Ambiente , Metaboloma , Metabolómica
13.
J Environ Manage ; 352: 120043, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38232590

RESUMEN

Rivers are ecosystems highly threatened by human activities and fish are an invaluable tool to measure and communicate environmental degradation and restoration. Fish bioassessment is crucial but notoriously difficult in Mediterranean-climate streams for a number of reasons, including low local species richness, faunas with high spatial turnover and generalist species, and scarcity of reference sites. In this study, we conducted the most comprehensive test of the pan-European fish index (EFI+) in the Iberian Peninsula, analysing its response to multiple anthropogenic pressures. We compiled a database, which we provide online, with 2970 electrofishing samples across Spain, involving 100,732 fish of 69 species. Principal component analyses of many quantitative variables were used to create new synthetic anthropogenic pressure indices. Correlation and multiple linear regression analyses were used to test the relationship between these pressures and the fish index (EFI+) and its four individual metrics scores (i.e., density of species intolerant to oxygen depletion, density of fish ≤150 mm of species intolerant to habitat degradation, richness of species of rheophilic reproduction habitat, and density of species of lithophilic reproduction habitat). We also obtained the same models but including the river basin district to test for spatial or methodological differences. Our results indicate that both the EFI+ index and its individual metrics respond to various anthropogenic pressures. These pressures explained about 36% of the variance of EFI+ values. Notably, downstream and mainstream reaches with higher agricultural or urban land uses, increased hydrologic alteration, and water and habitat quality impairment exhibited lower EFI+ values. Although less variance was explained for the individual metrics than for the fish index, they responded as expected to the different pressures. For instance, the richness of rheophilic species and the number of lithophilic fish decreased with hydrologic alteration, while the number of fish intolerant to oxygen depletion decreased with water quality impairment. Similar correlations were observed when river basin district was included in the model, but with higher explained variation and greater significance of the pressures. While it is possible to develop regional indices with more metrics and a stronger correlation with anthropogenic pressures, EFI+ is the only fish index that has been validated throughout the Spanish peninsular territory. Our results support the use of EFI+ in intercalibration exercises across Spain until better regional indices are developed.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Animales , Humanos , España , Monitoreo del Ambiente/métodos , Ríos , Peces , Oxígeno
14.
Environ Sci Pollut Res Int ; 31(9): 13327-13334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244160

RESUMEN

The pollution of microplastics (MPs) to the marine environment has become a widespread focus of attention. To assess MP-induced ecotoxicity on marine ecosystems, periphytic protozoan communities were used as test organisms and exposed to five concentrations of MPs: 0, 1, 5, 25, and 125 mg l-1. Protozoan samples were collected using microscope slides from coastal waters of the Yellow Sea, northern China. A total of 13 protozoan species were identified and represented different tolerance to MP-induced ecotoxicity. Inhibition effects of MPs on the test protozoan communities were clearly shown in terms of both the species richness and individual abundance and followed linear relationships to MP concentrations. The community patterns were driven by MPs and significantly shifted at concentrations over 5 mg l-1. Our findings demonstrated that MPs may induce the community-level ecotoxic response of periphytic protozoan fauna and followed significant community dynamics. Thus, it is suggested that periphytic protozoan fauna may be used as useful community-based test model organisms for evaluating MP-induced ecotoxicity in marine environments.


Asunto(s)
Cilióforos , Contaminantes Químicos del Agua , Ecosistema , Biodiversidad , Monitoreo del Ambiente , Microplásticos , Plásticos , Cilióforos/fisiología , Contaminantes Químicos del Agua/toxicidad
15.
Sci Prog ; 106(4): 368504231219335, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38105549

RESUMEN

We analyzed datasets from a long-term monitoring program of stream ecosystems in British Columbia, Canada, to determine whether or not it could detect climate change effects. In the Fraser River Basin (monitoring timespan 1994-2019), there was a marked (∼50%) increase in alpha diversity in reference streams, while BC North Coast (2004-2021) streams showed a modest trend of decreasing diversity and Columbia River Basin (2003-2018) and Vancouver Island (2001-2019) streams showed modestly increasing diversity. In all four regions, diversity across all sites in a specific period was primarily a function of sampling effort during this period rather than a temporal trend. Across all the regions, only three of 21 groups of faunally similar sites defined by Reference Condition Approach predictive modeling showed a suggestion of a directional change in community structure over time. Only 1 of 15 reference sites that were repeatedly sampled over several years showed a pattern that may indicate a response to changing climate. Three, not mutually exclusive, reasons why we did not see a clear effect of climate change on BC stream ecosystems were: 1) Little or no effect of climate change relative to other, potentially interacting biotic and abiotic factors, 2) The timespan of monitoring was too short to detect cumulative effects of climate change, and, most importantly, 3) The sampling design and protocol were unable to detect climate change effects. To better detect and characterize the effects of climate change on streams in monitoring programs, we recommend annual re-sampling of a few reference sites and detailed analysis of the natural and human environment of the sites along with better characterization of the benthic community (e.g. with eDNA) at all monitored sites.


Asunto(s)
Ecosistema , Invertebrados , Animales , Humanos , Invertebrados/fisiología , Monitoreo Biológico , Cambio Climático , Ríos/química , Monitoreo del Ambiente/métodos
16.
Environ Monit Assess ; 195(12): 1453, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37947882

RESUMEN

We present an inexpensive, versatile, and robust mounting system for Hester-Dendy (HD) multiplate samplers that are useful in aquatic biological studies and freshwater biomonitoring programs. Detailed instructions are provided outlining the construction and deployment of a concrete block system featuring threaded anchors for screwing in HD columns in a vertical position. Additionally, eye bolts provide a central attachment point for cabling the block securely to the stream or river bank, and for attachment of a buoy or physiochemical data logger if desired. All the components of the block system are inexpensive, readily available, and assembled with no special skills required. The system offers superior ease-of-use and a more standardized sampling device compared to other methods.


Asunto(s)
Monitoreo del Ambiente , Invertebrados , Animales , Monitoreo del Ambiente/métodos , Ríos , Monitoreo Biológico , Ecosistema
17.
Environ Monit Assess ; 195(7): 807, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37278915

RESUMEN

In the present study, we developed a new Swedish phosphorus diatom index (PDISE) to improve the poor fit of existing indices to match the needs of water managers to detect and mitigate eutrophication. We took advantage of a large amount of data (820 Swedish stream sites) collected in recent years. During our work, we found an unexpected bimodal response of the diatom assemblages to phosphorus. The taxa clustered either into an assemblage with a low or with a high site-specific averaged TP optimum (a calculated value comprised of the diatom taxa-specific optima). We could not find a characteristic diatom assemblage for sites with intermediate site-specific averaged TP optima. To our knowledge, this bimodal community response has not been shown earlier. The PDISE correlated more strongly than the currently used TDI to changes in TP concentrations. Thus, the PDISE should replace the TDI in the Swedish standard method. The modeled TP optima (expressed as categories) were different compared to the TDI for most of the taxa included in the index, indicating that the realized niche for these morphotaxa was different between Sweden and the UK where the TDI was developed originally. With a r2 of 0.68, the correlation of the PDISE to TP is among the highest reported for other diatom nutrient indices globally; thus, we believe that it might be worth to test it for other bioregions with similar geography and climate.


Asunto(s)
Diatomeas , Ríos , Monitoreo del Ambiente/métodos , Fósforo/análisis , Agua Dulce , Ecosistema
18.
Microb Ecol ; 85(3): 853-861, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36695828

RESUMEN

The goods and services provided by riverine systems are critical to humanity, and our reliance increases with our growing population and demands. As our activities expand, these systems continue to degrade throughout the world even as we try to restore them, and many efforts have not met expectations. One way to increase restoration effectiveness could be to explicitly design restorations to promote microbial communities, which are responsible for much of the organic matter breakdown, nutrient removal or transformation, pollutant removal, and biomass production in river ecosystems. In this paper, we discuss several design concepts that purposefully create conditions for these various microbial goods and services, and allow microbes to act as ecological restoration engineers. Focusing on microbial diversity and function could improve restoration effectiveness and overall ecosystem resilience to the stressors that caused the need for the restoration. Advances in next-generation sequencing now allow the use of microbial 'omics techniques (e.g., metagenomics, metatranscriptomics) to assess stream ecological conditions in similar fashion to fish and benthic macroinvertebrates. Using representative microbial communities from stream sediments, biofilms, and the water column may greatly advance assessment capabilities. Microbes can assess restorations and ecosystem function where animals may not currently be present, and thus may serve as diagnostics for the suitability of animal reintroductions. Emerging applications such as ecological metatranscriptomics may further advance our understanding of the roles of specific restoration designs towards ecological services as well as assess restoration effectiveness.


Asunto(s)
Ecosistema , Microbiota , Animales , Ríos , Peces , Biomasa , Biopelículas
19.
Mar Pollut Bull ; 186: 114382, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36442312

RESUMEN

The body-size spectrum of microperiphytons has been proved to be a powerful tool for bioassessment. To explore colonization dynamics in body-size spectrum of periphytic protozoa in two modified sampling systems of both glass slide (mGS) and polyurethane foam unit (mPFU), a 28-day colonization survey was conducted in coastal waters of the Yellow Sea, China. A total of 7 body-size ranks were identified from 62 species, with 7 ranks (60 species) in the mGS and 6 ranks (37 species) in the mPFU system. The stable pattern with similar body-size spectra was found earlier in the mGS system than mPFU system during the colonization period. Both the trajectory and bootstrapped average analyses revealed that the colonization dynamics were significantly different in the body-size spectrum between the two methods. Based on our data, it suggests that the mGS system might be a better choice than the mPFU system for bioassessment in marine ecosystems.


Asunto(s)
Cilióforos , Perifiton , Ecosistema , Biodiversidad , Monitoreo del Ambiente/métodos , China
20.
Environ Sci Pollut Res Int ; 30(6): 16408-16417, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36180800

RESUMEN

Based on biological traits, the ecological quality status under the pressure of two harmful algal bloom (HAB) species was evaluated using functional units (FUs) of periphytic protozoan communities. Five treatments with different concentrations of Alexandrium tamarense and Gymnodinium catenatum, i.e., 100, 102, 103, 104, and 105 cells ml-1, were used. A total of 20 FUs were identified from 25 test protozoan species. Among these FUs, vagile algivores with large sizes showed a decreasing trend (i.e., in diversity and abundance) with increasing concentrations of algae, while vagile bacterivores and non-selectives with small sizes dominated at concentrations of 104 cells ml-1 of both algal species. Ellipse tests on pair-wise functional distinctness indices revealed a significant departure of test protozoan communities from an expected functional distinctness breadth when algal concentrations exceeded 104 cells ml-1. Based on these findings, it was concluded that FUs of periphytic protozoa may be a useful tool for evaluating the effects of HABs on ecological quality status in marine ecosystems.


Asunto(s)
Dinoflagelados , Ecosistema , Floraciones de Algas Nocivas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA