Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros











Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(7): 204, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237789

RESUMEN

Benign hyperplasia (BHP) is a common disorder that affects men over the age of 60 years. Transurethral resection of the prostate (TURP) is the gold standard for operative treatment, but a range of drugs are also available to improve quality of life and to reduce BHP-associated urinary tract infections and complications. Darifenacin, an anti-muscarinic agent, has been found effective for relieving symptoms of overactive bladder associated with BHP, but the drug has poor solubility and bioavailability, which are major challenges in product development. An inorganic/organic bio-composite with gastric pH-resistant property was synthesized for the targeted oral delivery of Darifenacin to the lower gastrointestinal tract (GIT). This development was accomplished through co-precipitation of calcium carbonate in quince seed-based mucilage. The FTIR, XRD, DSC, and TGA results showed good drug-polymer compatibility, and the SEM images showed calcite formation in the quince hydrogel system. After 72 h, the drug release of 34% and 75% were observed in acidic (0.1N HCl) and 6.8 pH phosphate buffer, respectively. A restricted/less drug was permeated through gastric membrane (21.8%) as compared to permeation through intestinal membrane (65%.) The developed composite showed significant reduction in testosterone-induced prostatic hyperplasia (2.39 ± 0.12***) as compared to untreated diseased animal group. No sign of organ toxicity was observed against all the developed composites. In this study, we developed an inorganic-organic composite system that is highly biocompatible and effective for targeting the lower GIT, thereby avoiding the first-pass metabolism of darifenacin.


Asunto(s)
Benzofuranos , Pirrolidinas , Solubilidad , Administración Oral , Animales , Benzofuranos/administración & dosificación , Benzofuranos/farmacocinética , Benzofuranos/química , Benzofuranos/farmacología , Masculino , Pirrolidinas/química , Pirrolidinas/administración & dosificación , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Ratas , Hiperplasia Prostática/tratamiento farmacológico , Antagonistas Muscarínicos/administración & dosificación , Antagonistas Muscarínicos/farmacocinética , Disponibilidad Biológica , Carbonato de Calcio/química , Concentración de Iones de Hidrógeno , Hidrogeles/química , Polímeros/química
2.
Front Chem ; 12: 1383620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086984

RESUMEN

Oral bacterial biofilms are the main reason for the progression of resistance to antimicrobial agents that may lead to severe conditions, including periodontitis and gingivitis. Essential oil-based nanocomposites can be a promising treatment option. We investigated cardamom, cinnamon, and clove essential oils for their potential in the treatment of oral bacterial infections using in vitro and computational tools. A detailed analysis of the drug-likeness and physicochemical properties of all constituents was performed. Molecular docking studies revealed that the binding free energy of a Carbopol 940 and eugenol complex was -2.0 kcal/mol, of a Carbopol 940-anisaldehyde complex was -1.9 kcal/mol, and a Carbapol 940-eugenol-anisaldehyde complex was -3.4 kcal/mol. Molecular docking was performed against transcriptional regulator genes 2XCT, 1JIJ, 2Q0P, 4M81, and 3QPI. Eugenol cinnamaldehyde and cineol presented strong interaction with targets. The essential oils were analyzed against Staphylococcus aureus and Staphylococcus epidermidis isolated from the oral cavity of diabetic patients. The cinnamon and clove essential oil combination presented significant minimum inhibitory concentrations (MICs) (0.0625/0.0312 mg/mL) against S. epidermidis and S. aureus (0.0156/0.0078 mg/mL). In the anti-quorum sensing activity, the cinnamon and clove oil combination presented moderate inhibition (8 mm) against Chromobacterium voilaceum with substantial violacein inhibition (58% ± 1.2%). Likewise, a significant biofilm inhibition was recorded in the case of S. aureus (82.1% ± 0.21%) and S. epidermidis (84.2% ± 1.3%) in combination. It was concluded that a clove and cinnamon essential oil-based formulation could be employed to prepare a stable nanocomposite, and Carbapol 940 could be used as a compatible biopolymer.

3.
J Biomed Mater Res B Appl Biomater ; 112(6): e35415, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38773744

RESUMEN

This study reports the synthesis and characterization of hydroxyapatite (HA)-based bio-composites reinforced with varying amounts (by weight, 1-15 wt.%) of bio-medium entropy alloy (BioMEA) for load-bearing implant applications. BioMEA powders consisting of Ti, Nb, Zr, and Mo were mechanically alloyed for 100 h and subsequently added to HA using powder metallurgy techniques. To show the effect of BioMEA, the microstructure, density, and mechanical tests have been conducted and the synthesized BioMEA was characterized by scanning electron microscope (SEM), x-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FTIR) analysis. In addition, in vitro degradation behavior and bioactivity analyses of bio-composites have been conducted. XRD analysis revealed the formation of BioMEA after 20 h of mechanical alloying. The highest density value of 2.47 g/cm3 was found in 15 wt.% BioMEA-reinforced bio-composite. The addition of BioMEA reinforcement led to a significant increase in hardness and tensile strength values, with the highest values observed at 15 wt.% reinforcement. Compression tests demonstrated a significant increase in compressive strength and deformation capability of the bio-composites with the highest values observed at 15 wt.% BioMEA addition. The highest toughness of 7.68 kJ/m2 was measured in 10 wt.% MEA-reinforced bio-composites. The produced bio-composite materials have an elastic modulus between 3.5-5.5 GPa, which may provide a solution to the stress shielding problems caused by the high elastic modulus of metallic implant materials. The most severe degradation occurred in 15 wt.% MEA-reinforced bio-composites, and the effect of degradation caused a decrease in Ca and an increase in Ti-Ni-Zr-Mo in all bio-composites. These findings suggest that HA/BioMEA bio-composites have the potential to be developed as advanced biomaterials with moderate mechanical and biological properties for load-bearing implant applications.


Asunto(s)
Estrés Mecánico , Titanio/química , Niobio/química , Circonio/química , Molibdeno/química , Entropía , Aleaciones/química , Materiales Biocompatibles/química , Difracción de Rayos X
4.
Polymers (Basel) ; 16(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794595

RESUMEN

Many plant materials in nature have the ability to change their shape to respond to external stimuli, such as humidity or moisture, to ensure their survival or safe seed release. A well-known example for this phenomenon is the pinecone, which is able to open its scales at low humidity due to the specific bilayer structures of the scale. Inspired by this, we developed a novel humidity-driven actuator based on paper. This was realized by the lamination of untreated paper made from eucalyptus fibers to a paper-carboxymethyl cellulose (CMC) composite. As observed, the hygroexpansion of the composite can be easily controlled by the amount of CMC in the impregnated paper sheet, which, thus, controls the morphologic deformation of the paper bilayer. For a more detailed understanding of these novel paper soft robots, we also studied the dynamic water vapor adsorption, polymer distribution and hygroexpansion of the paper-polymer composites. Finally, we applied a geometrically nonlinear finite element model to predict the bending behavior of paper bilayers and compared the results to experimental data. From this, we conclude that due to the complexity of structure of the paper composite, a universal prediction of the hygromorphic behavior is not a trivial matter.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38573079

RESUMEN

Because of the critical usage of biomedical applications, their constitutive materials must possess specific properties to satisfy the environmental conditions. Consequently, the selection of the best materials is one of the most important subjects in the manufacturing industry. Bio-composites are outstanding alternatives to customary biomaterials in biomedical applications owing to their supreme material properties. On the other hand, mechanical analyses including static and dynamic analyses of bio-systems should be carried out to optimize the designed biomedical applications like medical implants. Thus, wave dispersion analysis of functionally graded (FG) bio-composite plate could serve for design goals of biomedical structures. In this investigation, the influence of various higher-order shear deformation theories of the plate on the dispersion of bulk waves in FG bio-composite plate lying on Kerr foundation has been explored for the first time. The constituent materials of FG structure are gold alloy as metal phase and hydroxyapatite as ceramic phase. In order to compute the effective properties of the studied structure, the upper Hashin-Shtrikman homogenization scheme has been implemented. Higher-order theories and Hamilton's principle have been applied to derive the governing equations and the obtained equations are analytically solved via a harmonic function. Eventually, the sensitivity of various important parameters has been surveyed and discussed comprehensively. The obtained outcomes have been indicated in detail.

6.
J Water Health ; 22(4): 652-672, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38678420

RESUMEN

A new type of bio-composite material is being produced from water-recovered resources such as cellulose fibres from wastewater, calcite from the drinking water softening process, and grass and reed from waterboard sites. These raw materials may be contaminated with pathogens and chemicals such as Escherichia coli, heavy metals, and resin compounds. A novel risk assessment framework is proposed here, addressing human health risks during the production of new bio-composite materials. The developed framework consists of a combination of existing risk assessment methods and is based on three main steps: hazard identification, qualitative risk mapping, and quantitative risk assessment. The HAZOP and Event Tree Analysis methodologies were used for hazard identification and risk mapping stages. Then, human health risks were quantitatively assessed using quantitative chemical risk assessment, evaluating cancer and non-cancer risk, and quantitative microbial risk assessment. The deterministic and the stochastic approaches were performed for this purpose. The contamination of raw materials may pose human health concerns, resulting in cancer risk above the threshold. Microbial risk is also above the safety threshold. Additional analysis would be significant as future research to better assess the microbial risk in biocomposite production. The framework has been effectively used for chemical and microbial risk assessment.


Asunto(s)
Recursos Hídricos , Medición de Riesgo , Humanos , Aguas Residuales/análisis , Aguas Residuales/química , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/análisis
7.
Carbohydr Polym ; 334: 122044, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553240

RESUMEN

Chitosan, known for its appealing biological properties in packaging and biomedical applications, faces challenges in achieving a well-organized crystalline structure for mechanical excellence under mild conditions. Herein, we propose a facile and mild bioengineering approach to induce organized assembly of amorphous chitosan into mechanically strong bio-composite via incorporating a genetically engineered insect structural protein, the cuticular protein hypothetical-1 from the Ostrinia furnacalis (OfCPH-1). OfCPH-1 exhibits high binding affinity to chitosan via hydrogen-bonding interactions. Simply mixing a small proportion (0.5 w/w%) of bioengineered OfCPH-1 protein with acidic chitosan precursor induces the amorphous chitosan chains to form fibrous networks with hydrated chitosan crystals, accompanied with a solution-to-gel transition. We deduce that the water shell destruction driven by strong protein-chitosan interactions, triggers the formation of well-organized crystalline chitosan, which therefore offers the chitosan with significantly enhanced swelling resistance, and strength and modulus that outperforms that of most reported chitosan-based materials as well as petroleum-based plastics. Moreover, the composite exhibits a stretch-strengthening behavior similar to the training living muscles on cyclic load. Our work provides a route for harnessing the OfCPH-1-chitosan interaction in order to form a high-performance, sustainably sourced bio-composite.


Asunto(s)
Quitosano , Animales , Quitosano/química , Agua , Enlace de Hidrógeno , Insectos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38419505

RESUMEN

Due to entry of body fluid like saliva, blood, etc. in the dental implant assembly lowers the preload value, thus dental implant abutment tightening torque loses. In this article a novel chitosan-reinforced bamboo and nano bio-silica-reinforced five composite materials (CP, CF, C1, C2, and C3) are fabricated using the hand layup method, and their mechanical, biocompatible, and moisture absorption properties are observed and discussed. The present study examines the impact of friction and Young's modulus on the correlation between torque and starting load in dental implant abutment screws, utilizing the attributes of a bio-composite material. C2 bio-composite composite material exhibits the highest tensile strength (139.442 MPa), flexural strength (183.571 MPa), compressive strength (62.78 MPa), and a minimum value of 1.35% absorption of water. C3 is tested with no cytotoxicity, while C3 and CF exhibit weak biofilm resistance against S. aureus gram-positive bacteria. The C2 bio-composite material demonstrated a maximum initial load of 20 N with a tightening torque of 20 N-cm, under both 0.12 and 0.16 coefficients of friction. The simulated results were compared with several theoretical relations of torque and initial load and found that the Motos equation holds the nearest result to the obtained preload value from finite element analysis. Overall, the experimental findings suggest that the C2 bio-composite material holds significant potential as a prominent material for dental implants or fixtures.

9.
Int J Biol Macromol ; 262(Pt 2): 130155, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38365153

RESUMEN

Carrageenan is an emerging biopolymer for wound healing and regenerative applications. In this study, reduced graphene oxide (rGO) and hydroxyapatite (HAp) nano-composites infused carrageenan bioactive membrane was fabricated. Here, hydroxyapatite was synthesized from cuttlefish bone (CF-HAp) and its properties were compared with that of chemically synthesized HAp. Crystalline Ca5(PO4)3(OH) and Ca3(PO4)2) phases were obtained in cuttlefish bone derived HAp. Reduced graphene oxide was synthesized and composites were prepared with chemical HAp and CF-HAp. FT-IR spectral analysis showed the imprints of hydroxyapatite on the membrane and also nano-structured particles were evident through morphological estimations that confirm the distribution of nano-particles on the carrageenan membrane. Nano-particulates infused carrageenan membrane showed the maximum tensile strength, in which graphene incorporated carrageenan bioactive membrane showed highest stability of 15.26 MPa. The contact angle of chemical HAp infused carrageenan membrane (CAR-HAp) showed more hydrophilic in nature (48.63° ± 7.47°) compared to control (61.77° ± 1.28°). Bio-compatibility features enunciate the optimal compatibility of fabricated bioactive membrane with fibroblast cell line; simultaneously, CAR-rGO-CF-HAp showed tremendous wound healing behavior with zebrafish model. Hence, fabricated bioactive membrane with the infusion of rGO- hydroxyapatite derived from cuttlefish bone was found to be a versatile biopolymer membrane for wound healing application.


Asunto(s)
Durapatita , Grafito , Animales , Durapatita/química , Grafito/química , Carragenina , Decapodiformes , Espectroscopía Infrarroja por Transformada de Fourier , Pez Cebra , Biopolímeros
10.
Environ Sci Pollut Res Int ; 31(14): 21057-21072, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38381287

RESUMEN

The concept of circular economy, aiming at increasing the sustainability of products and services in the water and other sectors, is gaining momentum worldwide. Driven by this concept, novel bio-composite materials produced by recovering resources from different parts of the water cycle are now manufactured in The Netherlands. The new materials are used for different products such as canal bank protection elements, as an alternative to similar elements made of hardwood. As much as these new materials are appealing from the sustainability point of view, they may leach toxic substances into the aquatic environment given some of their ingredients, e.g., cellulose recovered from wastewater treatment. Therefore, a methodology for the assessment of related environmental risks is needed and it does not exist currently. This paper addresses this knowledge gap by presenting a framework for this. The framework is based on European environmental risk assessment guidelines, and it includes four key steps: (i) hazard identification, (ii) dose-response modelling, (iii) exposure assessment and (iv) risk characterisation (i.e. assessment). As part of the first step, laboratory leaching tests were carried out to evaluate the potential release of specific chemical substances such as heavy metals and resin compounds into the aquatic environment. Laboratory test results were then used as input data to evaluate the risk of potential leaching from canal bank protection elements into surface water. A deterministic model was used first to identify the chemicals exceeding the guideline threshold. Subsequently, a stochastic model was applied to evaluate the environmental risks across a range of leachate concentrations and water velocities in the canal, thereby simulating a broader spectrum of possible situations. The risk analyses were conducted for four alternative bio-composite materials made of different ingredients, two different flow conditions (stagnant water and advective flow) in two types of canals (wide ditch and primary watercourse) and for two different water levels based on season conditions (summer and winter conditions). The results obtained from leaching tests identified Cu, Mn, Zn, styrene and furfuryl alcohol as potentially troublesome chemicals. In the case of stagnant water, the absence of a flow rate increases the residence time of the chemicals in the surface water, resulting in a higher PEC/PNEC (i.e. risk) value. However, under stagnant case conditions, environmental risks for all chemicals considered turned out to be below the safety threshold. In the advective case, the existence of a flow rate, even at low velocities simulating the conditions of 'almost no flow,' contributes to increased dilution, resulting in lower PEC/PNEC ratio values. The results presented here, even though representing real-case scenarios, are only indicative as these are based on laboratory leaching tests and a number of assumptions made. Additional field tests involving collecting and analysing water and sediment samples from the canal where the canal bank protection elements are located, over a prolonged period, are required to come up with more conclusive findings.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/análisis , Países Bajos , Agua/análisis , Medición de Riesgo
11.
Environ Sci Pollut Res Int ; 31(14): 21302-21325, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383933

RESUMEN

The growing need to examine the adsorption capabilities of innovative materials in real-world water samples has encouraged a shift from single to multicomponent adsorption systems. In this study, a novel composite, PANI-g-SM was synthesized by covalently grafting a lignocellulosic biomass, Saccharum munja (SM) with polyaniline (PANI). The as-synthesized composite was investigated for the simultaneous adsorption of cationic (Methylene Blue (MB); Crystal Violet (CV)) and anionic dyes (Reactive Red 35 (RR); Fast Green FCF (FG)) from four single components and two binary systems, MB + RR and CV + FG. Further, the effect and interaction of pH (2-11), dosage (0.01-0.04 g/10 mL), and initial concentration (0.0313 to 0.1563 mmol/L) on the elimination of dyes by PANI-g-SM were studied through a novel design of Box-Behnken of Response Surface Methodology (RSM) technique which was found to be highly useful for revealing the chemistry of interfaces in multi-component systems. The extended Langmuir model for the binary system indicated the presence of synergism, as result the maximum monolayer adsorption capacity increased by 44.44%, 645.83%, 67.88%, and 441.07% for MB, RR, CV, and FG dye, respectively. Further, the adsorption process mainly followed a pseudo-second-order kinetic model, and the thermodynamic studies revealed the exothermic nature of adsorption for RR and FG dye while endothermic for MB and CV dye, respectively with Δ G varying from - 1.68 to - 6.12 kJ/mol indicating the spontaneity of the process. Importantly, the efficacy of the composite was evaluated for the treatment of textile industry effluent highlighting its potential as an adsorbent for wastewater treatment.

12.
Int J Biol Macromol ; 264(Pt 1): 130408, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417764

RESUMEN

Water is the most essential resource for the biotic and abiotic components of an ecosystem. Any change in the quality of this water may cause adverse impact on the ecosystem. Hexavalent chromium is one such important pollutant that gets exposed in the water mainly through anthropogenic processes. Adsorption is considered to be an effective, economic and easiest method for remediation of such pollutants. Amongst the innumerable adsorbents available, biopolymers fetch the interest due to its cost effectiveness, efficiency and biocompatibility. But, the mechanical strength and workability of such biopolymers makes it unfit to use as an adsorbent. To improve these drawbacks, synthesis of biopolymeric composites become the need of the hour. So, an attempt was made here to synthesize metal cross-linked binary bio-composites using Alginate and Chitosan polymer matrix. Synthesized bio-composites were characterised with the aid of FTIR, XPS, Thermal analysis, SEM with EDAX and subjected for hexavalent chromium removal from water. Analysis of variance (ANOVA) with 95 % confidence intervals was used to assess the significance of independent variables and their interactions. Adsorption studies were done using batch process and to achieve greater sorption, various influencing parameters were optimized one by one. While investigating one parameter, other parameters were kept unaltered. Optimization was done for the parameters like contact time, dosage of the adsorbent, pH of the medium and presence of co-ions. Contact time and dosage for all the composites was 30 mins and 0.1 g respectively. Amongst the composites, Zirconium loaded binary composite possess high sorption capacity of around 14.8 mg/g. While Calcium and Iron loaded composites exhibit sorption capacity of around 9.8 mg/g and 10.4 mg/g respectively. Presence of other co-ions in the medium doesn't affect the sorption process. Isothermal studies infer the adsorption follows Langmuir model and thermodynamic parameters concludes the endothermic and randomness of the adsorption. The bio-composites can be recycled and used upto three cycles. Field trial was conducted and the composites work well in such conditions.


Asunto(s)
Quitosano , Contaminantes Ambientales , Alginatos , Ecosistema , Cromo , Agua , Biopolímeros , Calcio
13.
J Mech Behav Biomed Mater ; 151: 106321, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38211502

RESUMEN

Despite abundant theoretical investigations on the dynamic behavior of functionally graded (FG) structures, the study on frequency analysis of FG bio-composite structures is limited. FG bio-composite materials due to their biocompatibility potentials and good material properties can be applied in biomedical applications, especially dental implants. In this investigation, a natural frequency response of the FG bio-composite plate is analyzed within the framework of the newly developed refined higher-order shear deformation plate theory. Additionally, the imperfection impact on frequency behavior is evaluated while three imperfection distribution patterns are taken into account. The constitutive materials of FG bio-composite plate are Hydroxyapatite and Titanium. The effective material properties of the structure are determined with the help of the upper Hashin-Shtrikman bounds homogenization model. In continuation, to solve the derived governing equations of imperfect FG bio-composite plate, Galerkin's analytical method is employed. Also, the precision of the used theory is validated, the obtained outcomes are compared and an acceptable matching is found. Later, the sensitivity of different considerable variables is comprehensively assessed and discussed.


Asunto(s)
Placas Óseas , Durapatita , Durapatita/química
14.
Int J Biol Macromol ; 256(Pt 1): 128041, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979768

RESUMEN

Due to environmental issues, production costs, and the low recycling capability of conventional epoxy polymers and their composites, many science groups have tried to develop a new type of epoxy polymers, which are compatible with the environment. Considering the precursors, these polymers can be produced from plant oils, saccharides, lignin, polyphenol, and natural resins. The appearance of these bio-polymers caused to introduce a new type of composites, namely bio-epoxy nanocomposites, which can be classified according to the synthesized bio-epoxy, the used nanomaterials, or both. Hence, in this work, various bio-epoxy resins, which have the proper potential for application as a matrix, are completely introduced with the synthesis viewpoint, and their characterized chemical structures are drawn. In the next steps, the bio-epoxy nanocomposites are classified based on the used nanomaterials, which are carbon nanoparticles (carbon nanotubes, graphene nanoplatelets, graphene oxide, reduced graphene oxide, etc.), nano-silica (mesoporous and spherical), cellulose (nanofibers and whiskers), nanoclay and so on. Also, the features of these bio-nanocomposites and their applications are introduced. This review study can be a proper guide for developing a new type of green nanocomposites in the near future.


Asunto(s)
Grafito , Nanocompuestos , Nanotubos de Carbono , Lignina , Goma , Polifenoles , Resinas Epoxi/química , Nanotubos de Carbono/química , Polímeros , Nanocompuestos/química , Aceites de Plantas
15.
Int J Biol Macromol ; 257(Pt 1): 128357, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38035970

RESUMEN

This study attempted to develop a low-cost and eco-friendly bio-based composite adsorbent that is highly efficient in capturing potential toxic metals. The bio-composite adsorbent was prepared using graphene oxide (GO), carboxymethyl cellulose (CMC) and chitosan (CS); and characterized using FTIR, SEM-EDX and WAXD techniques. Metal-ion concentration in an aqueous solution was measured by ICP-OES. This article reveals that the adsorption of heavy metal ions varied according to the adsorbent quantity, initial metal concentration, pH, and interaction time. The metal ions' adsorption capacity (mg/g) was observed to increase when the interaction time and metal concentration increased. Conversely, metal ions adsorption was decreased with an increase in adsorbent dosages. The effect of pH on metal ions' adsorption was ion-specific. The substantial adsorption by GO/CMC/CS composite for Co2+, CrO42-, Mn2+ and Cd2+, had the respective values of 43.55, 77.70, 57.78, and 91.38 mg/g under acidic conditions. The metal ions experimental data were best fitted with pseudo-second-order (PSO) kinetics, and Freundlich isotherm model (except Co2+). The separation factors (RL) value in the present investigation were found between 0 and 1, meaning that the metal ions adsorption onto GO/CS/CMC composite is favorable. The RL and sorption intensity (1/n) values fitted well to the adsorption isotherm.


Asunto(s)
Quitosano , Grafito , Contaminantes Químicos del Agua , Carboximetilcelulosa de Sodio/química , Adsorción , Quitosano/química , Agua/química , Cinética , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Iones
16.
Int J Biol Macromol ; 255: 128032, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37977462

RESUMEN

Biological synthesis of nanoparticles is cost-effective as well as safer than physical and chemical methods. This study focuses on the biological synthesis of silver nanoparticles using Glutamicibacter uratoxydans which remains still unexplored. The synthesized silver nanoparticles are encapsulated with chitosan to prepare nanobiocomposite. Actinobacteria were isolated from mesophilic soil and screened for heavy metal resistance. The potent heavy metal resistant isolate was identified by 16SrRNA sequencing and used for the biological synthesis of silver particles. The characterization of chitosan- silver nano-bio composite was carried out by UV-Vis spectroscopy, FTIR spectroscopy, and XRD. Morphology was analyzed by scanning electron microscopy. The particle size and stability were studied using Dynamic light scattering and Zeta potential analysis. The nano-bio composite was tested for lead removal efficiency and antibiofilm activity. The potent isolate was identified as Glutamicibacter uratoxydans and it was named as Glutamicibacter uratoxydans VRAK 24. The UV spectra showed maximum absorbance at 410 nm. The FTIR spectra and XRD confirmed chitosan encapsulation with silver nanoparticle. The size of nanobiocomposite was found to be 0.376. The stability of nanobiocomposite recorded a zeta potential value of -5.37 mV. The lead removal efficiency was found to be 87.69 %. In addition, the nanobiocomposite exhibited highest anti-biofilm activity against S.aureus when compared to E.coli. The research findings, concluded that the synthesized nanobiocomposite showed better anti-biofilm activity. Also, nanobiocomposite was found to be a good adsorbent for the removal of heavy metal lead.


Asunto(s)
Quitosano , Nanopartículas del Metal , Plata/farmacología , Plata/química , Antibacterianos/química , Nanopartículas del Metal/química , Quitosano/farmacología , Quitosano/química , Espectroscopía Infrarroja por Transformada de Fourier , Biopelículas , Pruebas de Sensibilidad Microbiana
17.
Polymers (Basel) ; 15(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38139872

RESUMEN

Hybridizing carbon-fiber-reinforced polymers with natural fibers could be a solution to prevent delamination and improve the out-of-plane properties of laminated composites. Delamination is one of the initial damage modes in composite laminates, attributed to relatively poor interlaminar mechanical properties, e.g., low interlaminar strength and fracture toughness. This study examined the interlaminar bond strength, flexural properties, and hardness of carbon/flax/polyamide hybrid bio-composites using peel adhesion, three-point bending, and macro-hardness tests, respectively. In this regard, interlayer hybrid laminates were produced with a sandwich fiber hybrid mode, using woven carbon fiber plies (C) as the outer layers and woven flax fiber plies (F) as the inner ones (CFFC) in combination with a bio-based thermoplastic polyamide 11 matrix. In addition, non-hybrid carbon and flax fiber composites with the same matrix were produced as reference laminates to investigate the hybridization effects. The results revealed the advantages of hybridization in terms of flexural properties, including a 212% higher modulus and a 265% higher strength compared to pure flax composites and a 34% higher failure strain compared to pure carbon composites. Additionally, the hybrid composites exhibited a positive hybridization effect in terms of peeling strength, demonstrating a 27% improvement compared to the pure carbon composites. These results provide valuable insights into the mechanical performance of woven carbon-flax hybrid bio-composites, suggesting potential applications in the automotive and construction industries.

18.
Nat Prod Res ; : 1-10, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37933601

RESUMEN

This article aims to assess the suitability of natural neem gum in various composite material applications in place of epoxy resin. The assessment was done by thermal characterisation, experimental study and comparative analysis of thermal behaviour, Fourier transform IR spectroscopy (FTIR) characterisation and comparison of functional groups and mechanical properties of neat epoxy and neat neem resins. To study and compare thermal behaviour differential scanning calorimetry (DSC), thermogravimetric (TG) and relative derivative TG (DTG) analysis were conducted. The glass transition temperatures, exothermic and endothermic peaks, curing of thermosetting epoxy and crystallisation of polymeric neem, value of % cure and mass change or mass loss concerning temperature of both the resins were experimentally determined and comparative analysis was conducted to find the suitability of neem resin in composite material applications in place of epoxy resin. Functional groups of neem gum were identified and mechanical properties such as bond strength, toughness, rigidity and ductility were characterised and compared with that of epoxy resin by conducting FTIR.

19.
bioRxiv ; 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37961681

RESUMEN

Implantable polymeric biodegradable devices, such as biodegradable vascular stents or scaffolds, cannot be fully visualized using standard X-ray-based techniques, compromising their performance due to malposition after deployment. To address this challenge, we describe composites of methacrylated poly(1,12 dodecamethylene citrate) (mPDC) and MoS2 nanosheets to fabricate novel X-ray visible radiopaque and photocurable liquid polymer-ceramic composite (mPDC-MoS2). The composite was used as an ink with micro continuous liquid interface production (µCLIP) to fabricate bioresorbable vascular scaffolds (BVS). Prints exhibited excellent crimping and expansion mechanics without strut failures and, importantly, required X-ray visibility in air and muscle tissue. Notably, MoS2 nanosheets displayed physical degradation over time in a PBS environment, indicating the potential for producing bioresorbable devices. mPDC-MoS2 is a promising bioresorbable X-ray-visible composite material suitable for 3D printing medical devices, particularly vascular scaffolds or stents, that require non-invasive X-ray-based monitoring techniques for implantation and evaluation. This innovative composite system holds significant promise for the development of biocompatible and highly visible medical implants, potentially enhancing patient outcomes and reducing medical complications.

20.
J Exp Orthop ; 10(1): 119, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991574

RESUMEN

We present a case of a 41-year-old male amateur soccer player with no comorbidities, who experienced a rerupture of the Achilles tendon 5 years after his initial end-to-end plasty. To address this, we opted for a full-thickness reconstruction using a graft under the Clearant Process of the Achilles tendon. As an innovative approach, we proposed an alternative fixation technique, employing a Bio Composite Arthrex 9 mm x 35 mm interference screw, placed at the apex of the calcaneus body. For a period of 5 years, the patient underwent regular imaging follow-ups with Magnetic Resonance Imaging (MRI) and clinical assessments using the Foot and Ankle Ability Measure Activity Subscale Score and Foot and Ankle Ability Measure Sports Subscale Score. This case highlights the importance of exploring novel fixation methods for Achilles tendon reconstruction, particularly in cases of rerupture. The use of the Bio Composite Arthrex screw, in conjunction with the Clearant Process graft, demonstrated promising results both in imaging and functional outcomes, but more case studies with positive results are needed to evaluate the effectiveness of this reconstruction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA