Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 20(15): e2306967, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37992250

RESUMEN

The traditional recycling methods of the spent lithium ion batteries (LIBs) involve the intricate and cumbersome steps. This work proposes a facile method of acid leaching followed by the sulfurization treatment to achieve the high Li leaching efficiency, and obtain high-performance multi-function electrocatalysts for oxygen reduction (ORR), oxygen evolution (OER), and methanol oxidation reactions (MOR) from the spent LIB ternary cathodes. By this method, the Li leaching efficiency from the spent LIB ternary cathode can reach 98.3%, and the transition metal sulfide heterostructures (LNMCO-H-450S) consisting MnS, NiS2, and NiCo2S4 phases can be obtained. LNMCO-H-450S shows the superior bifunctional oxygen catalytic activities with ORR half-wave potential of 0.763 V and OER potential at 10 mA cm-2 of 1.561 V, surpassing most of the state-of-the-art electrocatalysts. LNMCO-H-450S also demonstrates the superior MOR catalytic activity with the potential at 100 mA cm-2 being 1.37 V. Using LNMCO-H-450S as the oxygen catalyst, this work can construct the aqueous and solid-state zinc-air batteries with high power density of 309 and 257 mW cm-2, respectively. This work provides a promising strategy for the efficient recovery of Li, and reutilization of Ni, Co, and Mn from the spent LIB ternary cathodes.

2.
Small ; 18(21): e2201197, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35491510

RESUMEN

The transition-metal nitrogen-carbon (M-N-C) catalysts, as one of the optimal bifunctional oxygen catalysts, are vital for cathodic oxygen electrode of Zn-based air flow batteries (ZAFBs). However, chemical complexity of M-N-C catalysts prepared via the traditional pyrolytic process increases the difficulties of precise control toward configuration and repeatability, especially in large-scale synthesis. Herein, a bifunctional oxygen catalyst via a pyrolysis-free approach based on closed π-conjugated covalent organic polymers (COPs, microwave synthesis) is developed, which inherits the advantage of the well-defined configuration in an atomic manner. Profited from distinct catalytic centers and strong electronic coupling at the interface between COP and layered double hydroxides, the as-synthesized catalyst not only more easily permits large quantity production (>1 kg per batch), but also maintains an ultrahigh bifunctional activity and a long cycle stability even after scale synthesis (ΔE [Ej10 - E1/2 ] = 591 mV; energy efficiency drops by only 2.02% after 1200 cycles), which overwhelmingly exceeds the benchmark Pt/C+IrO2 and the state-of-the-art pyrolytic bifunctional M-N-C oxygen catalysts.

3.
Adv Sci (Weinh) ; 8(19): e2101314, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34369108

RESUMEN

One challenge facing the development of air electrodes for Zn-air batteries (ZABs) is the embedment of active sites into carbon, which requires cracks and blends between powder and membrane and results in low energy efficiency during manufacturing and utilization. Herein, a surface phosphorization-monolithic strategy is proposed to embed CoO nanoparticles into paulownia carbon plate (P-CoO@PWC) as monolithic electrodes. Benefiting from the retention of natural transport channels, P-CoO@PWC-2 is conducive to the construction of three-phase interface structure for efficient mass transfer and high electrical conductivity. The electrode exhibits remarkable catalytic activities for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with a small overpotential gap (EOER - EORR  = 0.68 V). Density functional theory calculations reveal that the incorporation of P on P-CoO@PWC-2 surface adjusts the electronic structure to promote the dissociation of water and the activation of oxygen, thus inducing catalytic activity. The monolithic P-CoO@PWC-2 electrode for quasi-solid-state or aqueous ZABs has excellent specific power, low charge-discharge voltage gap (0.83 V), and long-term cycling stability (over 700 cycles). This work serves as a new avenue for transforming abundant biomass into high-value energy-related engineering products.

4.
ACS Appl Mater Interfaces ; 13(2): 2447-2454, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33399444

RESUMEN

The spin state of antibonding orbital (eg) occupancy in LaCoO3 is recognized as a descriptor for its oxygen electrocatalysis. However, the Co(III) cation in typical LaCoO3 (LCO) favors low spin state, which is mediocre for absorbing oxygen-containing groups involved in oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), thus hindering its further development in electrocatalysis. Herein, both experimental and theoretical results reveal the enhancement of bifunctional electrocatalytic activity in LaCoO3 by N doping. More specifically, electron energy loss spectroscopy and superconducting quantum interference devices magnetic analysis demonstrate that the Co(III) cation in N-doped LaCoO3 (LCON) achieves a moderate eg occupancy (≈1) compared with its low spin state in LaCO3. First-principle calculation results reveal that N dopants play a bifunctional role of tuning the spin-state transition of Co(III) cations and increasing the electrical conductivity of LCO. Thus, the optimized LCON exhibits an OER overpotential of 1.69 V at the current density of 50 mA/cm2 (1.94 V for pristine LCO) and yields an ORR limiting current density of 5.78 mA/cm2 (4.01 mA/cm2 for pristine LCO), which offers a new strategy to simultaneously modulate the magnetic and electronic structures of LCO to further enhance its electrocatalytic activity.

5.
Adv Mater ; 33(5): e2007525, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33336466

RESUMEN

Designing stable and efficient electrocatalysts for both oxygen reduction and evolution reactions (ORR/OER) at low-cost is challenging. Here, a carbon-based bifunctional catalyst of magnetic catalytic nanocages that can direct enhance the oxygen catalytic activity by simply applying a moderate (350 mT) magnetic field is reported. The catalysts, with high porosity of 90% and conductivity of 905 S m-1 , are created by in situ doping metallic cobalt nanodots (≈10 nm) into macroporous carbon nanofibers with a facile electrospinning method. An external magnetic field makes the cobalt magnetized into nanomagnets with high spin polarization, which promote the adsorption of oxygen-intermediates and electron transfer, significantly improving the catalytic efficiency. Impressively, the half wave-potential is increased by 20 mV for ORR, and the overpotential at 10 mA cm-2 is decreased by 15 mV for OER. Compared with the commercial Pt/C+IrO2 catalysts, the magnetic catalyzed Zn-air batteries deliver 2.5-fold of capacities and exhibit much longer durability over 155 h. The findings point out a very promising strategy of using electromagnetic induction to boost oxygen catalytic activity.

6.
Adv Mater ; 31(31): e1805230, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30536643

RESUMEN

Over the past decade, the surging interest for higher-energy-density, cheaper, and safer battery technology has spurred tremendous research efforts in the development of improved rechargeable zinc-air batteries. Current zinc-air batteries suffer from poor energy efficiency and cycle life, owing mainly to the poor rechargeability of zinc and air electrodes. To achieve high utilization and cyclability in the zinc anode, construction of conductive porous framework through elegant optimization strategies and adaptation of alternate active material are employed. Equally, there is a need to design new and improved bifunctional oxygen catalysts with high activity and stability to increase battery energy efficiency and lifetime. Efforts to engineer catalyst materials to increase the reactivity and/or number of bifunctional active sites are effective for improving air electrode performance. Here, recent key advances in material development for rechargeable zinc-air batteries are described. By improving fundamental understanding of materials properties relevant to the rechargeable zinc and air electrodes, zinc-air batteries will be able to make a significant impact on the future energy storage for electric vehicle application. To conclude, a brief discussion on noteworthy concepts of advanced electrode and electrolyte systems that are beyond the current state-of-the-art zinc-air battery chemistry, is presented.

7.
ACS Appl Mater Interfaces ; 9(9): 8121-8133, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28207229

RESUMEN

Rechargeable Zn-air battery is limited by the sluggish kinetics and poor durability of the oxygen catalysts. In this Research Article, a new bifunctional oxygen catalyst has been developed through embedding the ultrafine NiFeO nanoparticles (NPs) in a porous amorphous MnOx layer, in which the NiFeO-core contributes to the high activity for the oxygen evolution reaction (OER) and the amorphous MnOx-shell functions as active phase for the oxygen reduction reaction (ORR), promoted by the synergistic effect between the NiFeO core and MnOx shell. The synergistic effect is related to the electron drawing of NiFeO core from MnOx shell, which decreases the affinity and adsorption energy of oxygen on MnOx shell and significantly increases the kinetics of ORR. The electrocatalytic activity and durability of NiFeO@MnOx depends strongly on the NiFeO:MnOx ratio. NiFeO@MnOx with NiFeO:MnOx weight ratio of 1:0.8 shows the best performance for reversible ORR and OER, with a potential gap (ΔE) of 0.792 V to achieve a current density of 3 mA cm-2 for ORR (EORR=3) and 5 mA cm-2 for OER (EOER=5) in 0.1 M KOH solution. The high activity of the NiFeO@MnOx(1:0.8) has been demonstrated in a Zn-air battery. Zn-air battery fabricated using the NiFeO@MnOx(1:0.8) oxygen electrode shows similar initial performance with that of Pt-Ir/C oxygen electrode but a much better durability under charge and discharge cycles as the result of the structure confinement effect of amorphous MnOx. The results demonstrate NiFeO@MnOx as an effective bifunctional oxygen catalysts for rechargeable metal-air batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA