Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202402254, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958873

RESUMEN

Chalcogen bonds (ChB) are moderately strong, directional, and specific non-covalent interactions that have garnered substantial interest over the last decades. Specifically, the presence of two σ-holes offers great potential for crystal engineering, catalysis, biochemistry, and molecular sensing. However, ChB applications are currently hampered by a lack of methods to characterize and control chalcogen bonds. Here, we report on the influence of various substituents (halogens, cyano, and methyl groups) on the observed self-complementary ChB networks of 2,1,3-benzoselenadiazoles. From molecular electrostatic potential calculations, we show that the electrostatic surface potentials (ESP) of the σ-holes on selenium are largely influenced by the electron-withdrawing character of these substituents. Structural analyses via X-ray diffraction reveal a variety of ChB geometries and binding modes that are rationalized via the computed ESP maps, although the structure of 5,6-dimethyl-2,1,3-benzoselenadiazole also demonstrates the influence of steric interactions. 77Se solid-state magic-angle spinning NMR spectroscopy, in particular the analysis of the selenium chemical shift tensors, is found to be an effective probe able to characterize both structural and electrostatic features of these self-complementary ChB systems. We find a positive correlation between the value of the ESP maxima at the σ-holes and the experimentally measured 77Se isotropic chemical shift, while the skew of the chemical shift tensor is established as a metric which is reflective of the ChB binding motif.

2.
Nanomaterials (Basel) ; 14(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38786779

RESUMEN

A set of novel Donor-Acceptor-Donor (D-A-D) benzoselenadiazole derivatives has been synthesized and crystallized in nanocrystals in order to explore the correlation between their chemical structure and the waveguided luminescent properties. The findings reveal that all crystals exhibit luminescence and active optical waveguiding, demonstrating the ability to adjust their luminescence within a broad spectral range of 550-700 nm depending on the donor group attached to the benzoselenadiazole core. Notably, a clear relationship exists between the HOMO-LUMO energy gaps of each compound and the color emission of the corresponding optical waveguides. These outcomes affirm the feasibility of modifying the color emission of organic waveguides through suitable chemical functionalization. Importantly, this study marks the first utilization of benzoseleniadiazole derivatives for such purposes, underscoring the originality of this research. In addition, the obtention of nanocrystals is a key tool for the implementation of miniaturized photonic devices.

3.
Chempluschem ; 85(5): 910-920, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32401425

RESUMEN

In this work, two symmetrical donor-acceptor-donor (D-A-D) type benzoselenadiazole (BSeD)-based π-conjugated molecules were synthesized and employed as an active switching layer for non-volatile data storage applications. BSeD-based derivatives with different donor units attached through common vinylene linkers showed different electrical and optical properties. 4,7-Di((E)-styryl)benzo[c][2,1,3]selenadiazole (DSBSeD) and 4,7-bis((E)-4-methoxystyryl)benzo[c][2,1,3]selenadiazole (DMBSeD) are sandwiched between gallium-doped ZnO (GZO) and metal aluminum electrodes respectively through solution-processed spin-coating method. The solution-processed nanofibrous switching layer containing the DMBSeD-based memory device showed reliable memory characteristics in terms of write and erase operations with low SET voltage than the random-aggregated DSBSeD-based device. The nanofibrous molecular morphology of switching layer overcomes the interfacial hole transport energy barrier at the interface of the DMBSeD thin-film and the bottom GZO electrode. The memory device GZO/DMBSeD/Al based on nanofibrous switching layers shows switching characteristics at compliance current of 10 mA with Vset =0.79 V and Vreset =-0.55 V. This work will be beneficial for the rational design of advanced next-generation organic memory devices by controlling the nanostructured morphology of active organic switching layer for enhanced charge-transfer phenomenon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA