Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38005295

RESUMEN

Aniba canelilla (Kunth) Mez essential oil has many biological activities due to its main compound 1-nitro-2-phenylethane (1N2F), followed by methyleugenol, a carcinogenic agent. This study analyzed the influence of seasonality on yields, antioxidant capacity, and 1N2F content of A. canelilla leaf and twig essential oils. Essential oils (EOs) were extracted with hydrodistillation and analyzed with gas chromatography coupled to mass spectrometry and a flame ionization detector. Antioxidant capacity was measured using the free radical scavenging method (DPPH). Chemometric analyses were carried out to verify the influence of climatic factors on the production and composition of EOs. 1-Nitro-2-phenylethane was the major constituent in A. canelilla EOs throughout the seasonal period (68.0-89.9%); methyleugenol was not detected. Essential oil yields and the 1N2F average did not show a statistically significant difference between the dry and rainy seasons in leaves and twigs. Moderate and significant correlations between major compounds and climate factor were observed. The twig oils (36.0 ± 5.9%) a showed greater antioxidant capacity than the leaf oils (20.4 ± 5.0%). The PCA and HCA analyses showed no statistical differences between the oil samples from the dry and rainy seasons. The absence of methyleugenolin in all months of study, described for the first time, makes this specimen a reliable source of 1N2F.


Asunto(s)
Lauraceae , Aceites Volátiles , Aceites Volátiles/química , Lauraceae/química , Estaciones del Año , Antioxidantes/farmacología , Cromatografía de Gases y Espectrometría de Masas , Hojas de la Planta
2.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36758966

RESUMEN

Apiculate yeasts belonging to the genus Hanseniaspora are predominant on grapes and other fruits. While some species, such as Hanseniaspora uvarum, are well known for their abundant presence in fruits, they are generally characterized by their detrimental effect on fermentation quality because the excessive production of acetic acid. However, the species Hanseniaspora vineae is adapted to fermentation and currently is considered as an enhancer of positive flavour and sensory complexity in foods. Since 2002, we have been isolating strains from this species and conducting winemaking processes with them. In parallel, we also characterized this species from genes to metabolites. In 2013, we sequenced the genomes of two H. vineae strains, being these the first apiculate yeast genomes determined. In the last 10 years, it has become possible to understand its biology, discovering very peculiar features compared to the conventional Saccharomyces yeasts, such as a natural and unique G2 cell cycle arrest or the elucidation of the mandelate pathway for benzenoids synthesis. All these characteristics contribute to phenotypes with proved interest from the biotechnological point of view for winemaking and the production of other foods.


Asunto(s)
Hanseniaspora , Vino , Hanseniaspora/genética , Fermentación , Vino/análisis , Levaduras/genética , Biología
3.
Molecules ; 27(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364159

RESUMEN

Cinnamomum verum (Lauraceae), also known as "true cinnamon" or "Ceylon cinnamon" has been widely used in traditional folk medicine and cuisine for a long time. The systematics of C. verum presents some difficulties due to genetic variation and morphological similarity between other Cinnamomum species. The present work aimed to find chemical and molecular markers of C. verum samples from the Amazon region of Brazil. The leaf EOs and the genetic material (DNA) were extracted from samples cultivated and commercial samples. The chemical composition of the essential oils from samples of C. verum cultivated (Cve1-Cve5) and commercial (Cve6-c-Cv9-c) was grouped by multivariate statistical analysis of Principal Component Analysis (PCA). The major compounds were rich in benzenoids and phenylpropanoids, such as eugenol (0.7-91.0%), benzyl benzoate (0.28-76.51%), (E)-cinnamyl acetate (0.36-32.1%), and (E)-cinnamaldehyde (1.0-19.73%). DNA barcodes were developed for phylogenetic analysis using the chloroplastic regions of the matK and rbcL genes, and psbA-trnH intergenic spacer. The psbA-trnH sequences provided greater diversity of nucleotides, and matK confirmed the identity of C. verum. The combination of DNA barcode and volatile profile was found to be an important tool for the discrimination of C. verum varieties and to examine the authenticity of industrial sources.


Asunto(s)
Cinnamomum , Aceites Volátiles , Aceites Volátiles/química , Cinnamomum zeylanicum/química , Filogenia , Cinnamomum/genética , Cinnamomum/química , Hojas de la Planta/genética , Hojas de la Planta/química , Código de Barras del ADN Taxonómico
4.
Plants (Basel) ; 10(9)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34579388

RESUMEN

Lauraceae families have great diversity in the world's tropical regions and are represented mainly by aromatic shrubs and trees with significant production of essential oils (EOs). This work presents a review of the EO chemical profiles from specimens of Aniba, including their seasonal variations, geographical distributions, and biological activities in the Amazon biome. Based on the survey, 15 species were reviewed, representing 167 oil samples extracted from leaves, twig barks, and woods. Brazilian Amazon was the most representative geographic area in the number of specimens, highlighting the locations Belém, (Pará state, PA) (3 spp., 37 samples), Santarém (PA) (3 spp., 10 samples), Carajás (PA) (3 spp., 7 samples), and Manaus (Amazonas state, AM) (3 spp., 16 samples). The main compound classes identified in oils were benzenoids and phenylpropanoids, represented by 1-nitro-2-phenylethane, benzyl salicylate, benzyl benzoate and methyleugenol, along with terpenoids, especially monoterpenes and sesquiterpenes, such as linalool, α-phellandrene, ß-phellandrene, ß-selinene, and spathulenol. The EOs from Aniba showed considerable variation in the chemical profiles according to season and collection site. The hierarchical cluster analysis classified the samples into two main groups according to chemical composition. This review highlights its comprehensive and up-to-date information on history, conservation, traditional uses, chemosystematics, pharmacological potential of Aniba species.

5.
Molecules ; 26(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805452

RESUMEN

Lauraceae species are widely represented in the Amazon, presenting a significant essential oil yield, large chemical variability, various biological applications, and high economic potential. Its taxonomic classification is difficult due to the accentuated morphological uniformity, even among taxa from a different genus. For this reason, the present work aimed to find chemical and molecular markers to discriminate Aniba species collected in the Pará State (Brazil). The chemical composition of the essential oils from Aniba canelilla, A. parviflora, A. rosaeodora, and A. terminalis were grouped by multivariate statistical analysis. The major compounds were rich in benzenoids and terpenoids such as 1-nitro-2-phenylethane (88.34-70.85%), linalool (15.2-75.3%), α-phellandrene (36.0-51.8%), and ß-phellandrene (11.6-25.6%). DNA barcodes were developed using the internal transcribed spacer (ITS) nuclear region, and the matK, psbA-trnH, rbcL, and ycf1 plastid regions. The markers psbA-trnH and ITS showed the best discrimination for the species, and the phylogenic analysis in the three- (rbcL + matK + trnH - psbA and rbcL + matK + ITS) and four-locus (rbcL + matK + trnH - psbA + ITS) combination formed clades with groups strongly supported by the Bayesian inference (BI) (PP:1.00) and maximum likelihood (ML) (BS ≥ 97%). Therefore, based on statistical multivariate and phylogenetic analysis, the results showed a significant correlation between volatile chemical classes and genetic characteristics of Aniba species.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , ADN de Plantas , Lauraceae , Aceites Volátiles/análisis , Brasil , Lauraceae/química , Lauraceae/clasificación , Filogenia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA