Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Evol Biol ; 34(1): 157-174, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33118222

RESUMEN

Adaptation to different environments can directly and indirectly generate reproductive isolation between species. Bluefin killifish (Lucania goodei) and rainwater killifish (L. parva) are sister species that have diverged across a salinity gradient and are reproductively isolated by habitat, behavioural, extrinsic and intrinsic post-zygotic isolation. We asked if salinity adaptation contributes indirectly to other forms of reproductive isolation via linked selection and hypothesized that low recombination regions, such as sex chromosomes or chromosomal rearrangements, might facilitate this process. We conducted QTL mapping in backcrosses between L. parva and L. goodei to explore the genetic architecture of salinity tolerance, behavioural isolation and intrinsic isolation. We mapped traits relative to a chromosome that has undergone a centric fusion in L. parva (relative to L. goodei). We found that the sex locus appears to be male determining (XX-XY), was located on the fused chromosome and was implicated in intrinsic isolation. QTL associated with salinity tolerance were spread across the genome and did not overly co-localize with regions associated with behavioural or intrinsic isolation. This preliminary analysis of the genetic architecture of reproductive isolation between Lucania species does not support the hypothesis that divergent natural selection for salinity tolerance led to behavioural and intrinsic isolation as a by-product. Combined with previous studies in this system, our work suggests that adaptation as a function of salinity contributes to habitat isolation and that reinforcement may have contributed to the evolution of behavioural isolation instead, possibly facilitated by linkage between behavioural isolation and intrinsic isolation loci on the fused chromosome.


Asunto(s)
Adaptación Biológica/genética , Fundulidae/genética , Aislamiento Reproductivo , Salinidad , Tolerancia a la Sal/genética , Animales , Femenino , Fertilización , Genoma , Masculino , Cromosomas Sexuales , Conducta Sexual Animal
2.
Proc Biol Sci ; 287(1923): 20192765, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32208837

RESUMEN

Female mate rejection acts as a major selective force within species, and can serve as a reproductive barrier between species. In spite of its critical role in fitness and reproduction, surprisingly little is known about the genetic or neural basis of variation in female mate choice. Here, we identify fruitless as a gene affecting female receptivity within Drosophila melanogaster, as well as female Drosophila simulans rejection of male D. melanogaster. Of the multiple transcripts this gene produces, by far the most widely studied is the sex-specifically spliced transcript involved in the sex determination pathway. However, we find that female rejection behaviour is affected by a non-sex-specifically spliced fruitless transcript. This is the first implication of fruitless in female behaviour, and the first behavioural role identified for a fruitless non-sex-specifically spliced transcript. We found that this locus does not influence preferences via a single sensory modality, examining courtship song, antennal pheromone perception, or perception of substrate vibrations, and we conclude that fruitless influences mate choice via the integration of multiple signals or through another sensory modality.


Asunto(s)
Drosophila melanogaster/genética , Conducta Sexual Animal/fisiología , Animales , Cortejo , Proteínas de Drosophila/genética , Femenino , Masculino
3.
Ethology ; 124(12): 862-869, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31024190

RESUMEN

In sexually reproducing organisms, speciation involves the evolution of reproductive isolating mechanisms that decrease gene flow. Premating reproductive isolation, often the result of mate choice, is a major obstacle to gene flow between species because it acts earlier in the life cycle than other isolating barriers. While female choice is often considered the default mode in animal species, research in the butterfly genus Heliconius, a frequent subject of speciation studies, has focused on male mate choice. We studied mate choice by H. cydno females by pairing them with either conspecific males or males of the closely related species H. pachinus. Significantly more intraspecific trials than interspecific trials resulted in mating. Because male courtship rates did not differ between the species when we excluded males that never courted, we attribute this difference to female choice. Females also performed more acceptance behaviours towards conspecific males. Premating isolation between these two species thus entails both male and female mate choice, and female choice may be an important factor in the origin of Heliconius species.

4.
Mol Ecol ; 25(8): 1883-94, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26837057

RESUMEN

Recent studies show that epigenetic variation in the form of DNA methylation may serve as a substrate for selection. Theory suggests that heritable epigenetic marks that increase fitness should increase in frequency in a population, and these changes may result in novel morphology, behaviour, or physiology, and ultimately reproductive isolation. Therefore, epigenetic variation might provide the first substrate for selection during the course of evolutionary divergence. This hypothesis predicts that populations in the earliest stages of divergence will differentiate in their methylome prior to any genetic differentiation. While several studies have investigated natural epigenetic variation, empirical studies that test predictions about its role in speciation are surprisingly scarce. Here, we investigate DNA methylation variation using an isoschizomeric digest method, Methyl-Sensitive Amplified Polymorphism, across multiple stages of evolutionary divergence in natural populations of North American stream fishes. We show that epigenetic differentiation between methylomes is greater than genetic divergence among closely related populations across two river drainages. Additionally, we demonstrate that epigenetic divergence is a stronger predictor of the strength of behavioural reproductive isolation and suggest that changes in the methylome could influence the evolution of reproductive isolation between species. Our findings suggest a role for epigenetics not only in the initiation of divergence, but also in the maintenance of species boundaries over greater evolutionary timescales.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Peces/genética , Especiación Genética , Genética de Población , Animales , Cruzamientos Genéticos , Femenino , Masculino , Maryland , Modelos Genéticos , Polimorfismo Genético , Aislamiento Reproductivo , Ríos
5.
J Evol Biol ; 29(2): 241-52, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26363130

RESUMEN

Evolutionary theory predicts that divergent selection pressures across elevational gradients could cause adaptive divergence and reproductive isolation in the process of ecological speciation. Although there is substantial evidence for adaptive divergence across elevation, there is less evidence that this restricts gene flow. Previous work in the boreal chorus frog (Pseudacris maculata) has demonstrated adaptive divergence in morphological, life history and physiological traits across an elevational gradient from approximately 1500-3000 m in the Colorado Front Range, USA. We tested whether this adaptive divergence is associated with restricted gene flow across elevation - as would be expected if incipient speciation were occurring - and, if so, whether behavioural isolation contributes to reproductive isolation. Our analysis of 12 microsatellite loci in 797 frogs from 53 populations revealed restricted gene flow across elevation, even after controlling for geographic distance and topography. Calls also varied significantly across elevation in dominant frequency, pulse number and pulse duration, which was partly, but not entirely, due to variation in body size and temperature across elevation. However, call variation did not result in strong behavioural isolation: in phonotaxis experiments, low-elevation females tended to prefer an average low-elevation call over a high-elevation call, and vice versa for high-elevation females, but this trend was not statistically significant. In summary, our results show that adaptive divergence across elevation restricts gene flow in P. maculata, but the mechanisms for this potential incipient speciation remain open.


Asunto(s)
Adaptación Fisiológica/genética , Altitud , Anuros/genética , Flujo Génico/genética , Especiación Genética , Animales , Anuros/clasificación , Conducta Animal/fisiología , Tamaño Corporal/fisiología , Femenino , Genotipo , Masculino , Repeticiones de Microsatélite/genética , Conducta Sexual Animal/fisiología , Temperatura , Vocalización Animal/fisiología
6.
J Evol Biol ; 28(1): 205-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25414094

RESUMEN

Hybridization is an important evolutionary process, with ecological and behavioural factors influencing gene exchange between hybrids and parent species. Patterns of hybridization in anemonefishes may result from living in highly specialized habitats and breeding status regulated by size-based hierarchal social groups. Here, morphological, ecological and genetic analyses in Kimbe Bay, Papua New Guinea, examine the hybrid status of Amphiprion leucokranos, a nominal species and presumed hybrid between Amphiprion sandaracinos and Amphiprion chrysopterus. We test the hypothesis that habitat use and relative size differences of the parent species and hybrids determine the patterns of gene exchange. There is strong evidence that A. leucokranos is a hybrid of smaller A. sandaracinos and larger A. chrysopterus, where A. chrysopterus is exclusively the mother to each hybrid, based on mtDNA cytochrome b and multiple nDNA microsatellite loci. Overlap in habitat, depth and host anemone use was found, with hybrids intermediate to parents and cohabitation in over 25% of anemones sampled. Hybrids, intermediate in body size, colour and pattern, were classified 55% of the time as morphologically first-generation hybrids relative to parents, whereas 45% of hybrids were more A. sandaracinos-like, suggesting backcrossing. Unidirectional introgression of A. chrysopterus mtDNA into A. sandaracinos via hybrid backcrosses was found, with larger female hybrids and small male A. sandaracinos mating. Potential nDNA introgression was also evident through distinct intermediate hybrid genotypes penetrating both parent species. Findings support the hypothesis that anemonefish hierarchical behaviour, habitat use and species-specific size differences determine how hybrids form and the evolutionary consequences of hybridization.


Asunto(s)
Evolución Biológica , Peces/genética , Hibridación Genética , Animales , Arrecifes de Coral , Citocromos b/genética , ADN Mitocondrial , Ecosistema , Femenino , Flujo Génico , Genética de Población , Masculino , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Papúa Nueva Guinea , Filogenia , Aislamiento Reproductivo
7.
Front Zool ; 11(1): 85, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25484906

RESUMEN

INTRODUCTION: Sexually selected traits contribute substantially to evolutionary diversification, for example by promoting assortative mating. The contributing traits and their relevance for reproductive isolation differ between species. In birds, sexually selected acoustic and visual signals often undergo geographic divergence. Clines in these phenotypes may be used by both sexes in the context of sexual selection and territoriality. The ways conspecifics respond to geographic variation in phenotypes can give insights to possible behavioural barriers, but these may depend on migratory behaviour. We studied a migratory songbird, the Stonechat, and tested its responsiveness to geographic variation in male song and morphology. The traits are acquired differently, with possible implications for population divergence. Song can evolve quickly through cultural transmission, and thus may contribute more to the establishment of geographic variation than inherited morphological traits. We first quantified the diversity of song traits from different populations. We then tested the responses of free-living Stonechats of both sexes to male phenotype with playbacks and decoys, representing local and foreign stimuli derived from a range of distances from the local population. RESULTS: Both sexes discriminated consistently between stimuli from different populations, responding more strongly to acoustic and morphological traits of local than foreign stimuli. Time to approach increased, and time spent close to the stimuli and number of tail flips decreased consistently with geographic distance of the stimulus from the local population. Discriminatory response behaviour was more consistent for acoustic than for morphological traits. Song traits of the local population differed significantly from those of other populations. CONCLUSIONS: Evaluating an individual's perception of geographic variation in sexually selected traits is a crucial first step for understanding reproductive isolation mechanisms. We have demonstrated that in both sexes of Stonechats the responsiveness to acoustic and visual signals decreased with increasing geographic distance of stimulus origin. These findings confirm consistent, fine discrimination for both learned song and inherited morphological traits in these migratory birds. Maintenance or further divergence in phenotypic traits could lead to assortative mating, reproductive isolation, and potentially speciation.

8.
Ecol Lett ; 17(9): 1053-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24943881

RESUMEN

The origin of species remains a central question, and recent research focuses on the role of ecological differences in promoting speciation. Ecological differences create opportunities for divergent selection (i.e. 'ecological' speciation), a Darwinian hypothesis that hardly requires justification. In contrast, 'mutation-order' speciation proposes that, instead of adapting to different environments, populations find different ways to adapt to similar environments, implying that speciation does not require ecological differences. This distinction is critical as it provides an alternative hypothesis to the prevailing view that ecological differences drive speciation. Speciation by sexual selection lies at the centre of debates about the importance of ecological differences in promoting speciation; here, we present verbal and mathematical models of mutation-order divergence by sexual selection. We develop three general cases and provide a two-locus population genetic model for each. Results indicate that alternative secondary sexual traits can fix in populations that initially experience similar natural and sexual selection and that divergent traits and preferences can remain stable in the face of low gene flow. This stable divergence can facilitate subsequent divergence that completes or reinforces speciation. We argue that a mutation-order process could explain widespread diversity in secondary sexual traits among closely related, allopatric species.


Asunto(s)
Ambiente , Especiación Genética , Modelos Biológicos , Caracteres Sexuales , Animales , Evolución Biológica , Femenino , Genética de Población , Masculino , Preferencia en el Apareamiento Animal , Mutación
9.
J Fish Biol ; 84(5): 1389-400, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24724945

RESUMEN

Robust reproductive isolation was found between the rainbow darter Etheostoma caeruleum and the orangethroat darter Etheostoma spectabile, as more offspring were produced when conspecific males and females were crossed as compared with heterospecific crosses. Furthermore, fewer eggs resulted from heterospecific crosses involving sympatric E. spectabile females than those using allopatric E. spectabile females, while a similar pattern was not observed in heterospecific crosses using E. caeruleum females. These results suggest that reinforcement, i.e. selection for pre-zygotic reproductive barriers driven by reduced hybrid fitness, may have contributed to the evolution and maintenance of reproductive barriers between these potentially hybridizing species in sympatry.


Asunto(s)
Hibridación Genética , Percas/genética , Aislamiento Reproductivo , Simpatría , Animales , Cruzamientos Genéticos , Femenino , Masculino , Óvulo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA