Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38894256

RESUMEN

This manuscript presents the use of three novel technologies for the implementation of wireless green battery-less sensors that can be used in agriculture. The three technologies, namely, additive manufacturing, energy harvesting, and wireless power transfer from airborne transmitters carried from UAVs, are considered for smart agriculture applications, and their combined use is demonstrated in a case study experiment. Additive manufacturing is exploited for the implementation of both RFID-based sensors and passive sensors based on humidity-sensitive materials. A number of energy-harvesting systems at UHF and ISM frequencies are presented, which are in the position to power platforms of wireless sensors, including humidity and temperature IC sensors used as agriculture sensors. Finally, in order to provide wireless energy to the soil-based sensors with energy harvesting features, wireless power transfer (WPT) from UAV carried transmitters is utilized. The use of these technologies can facilitate the extensive use and exploitation of battery-less wireless sensors, which are environmentally friendly and, thus, "green". Additionally, it can potentially drive precision agriculture in the next era through the implementation of a vast network of wireless green sensors which can collect and communicate data to airborne readers so as to support, the Artificial Intelligence and Machine Learning-based decision-making with data.

2.
Sensors (Basel) ; 23(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37514675

RESUMEN

The energy consumption of a heating, ventilation, and air conditioning (HVAC) system represents a large amount of the total for a commercial or civic building. In order to optimize the system performance and to increase the comfort of people living or working in a building, it is necessary to monitor the relevant parameters of the circulating air flux. To this end, an array of sensors (i.e., temperature, humidity, and CO2 percentage sensors) is usually deployed along the aeraulic ducts and/or in various rooms. Generally, these sensors are powered by wires or batteries, but both methods have some drawbacks. In this paper, a possible solution to these drawbacks is proposed. It presents a wireless sensor node powered by an Energy Harvesting (EH) device acted on by the air flux itself. The collected data are transmitted to a central unit via a LoRa radio channel. The EH device can be placed in air ducts or close to air outlets.

3.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904723

RESUMEN

An industrial wireless monitoring and control system, capable of supporting energy-harvesting devices through smart sensing and network management, designed for improving electro-refinery performance by applying predictive maintenance, is presented. The system is self-powered from bus bars, and features wireless communication and easy-to-access information and alarms. With cell voltage and electrolyte temperature measurements, the system enables real-time cell performance discovery and early reaction to critical production or quality disturbances such as short-circuiting, flow blockages, or electrolyte temperature excursions. Field validation shows an increase in operational performance of 30% (reaching 97%) in the detection of short circuits, which, thanks to a neural network deployed, are detected, on average, 10.5 h earlier compared to the traditional methodology. The developed system is a sustainable IoT solution, being easy to maintain after its deployment, and providing benefits of improved control and operation, increased current efficiency, and decreased maintenance costs.

4.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36366199

RESUMEN

Vibration energy harvesting has received much attention as a new type of power solution for low-power micro/nano-devices. However, VEH (vibration energy harvester) based on PVDF (polyvinylidene fluoride) piezoelectric materials have a low output power and energy conversation efficiency due to the relatively low piezoelectric constant, coupling coefficient, and dielectric constant. For this reason, we design a vibration energy conversion power supply, which consists of a VEH with a PVDF piezoelectric thin film planar array vibration structure and an energy harvesting circuit for regulating the electric energy of multiple sources. Furthermore, our solution was validated by simulations of structural dynamics in COMSOL and equivalent circuits model in Multisim. From the circuitry simulation results, the output current and the charging period increase and decrease, doubling, respectively, for each doubling of the number of array groups of films. Moreover, the solid mechanics simulation results show that the planar array structure makes the phase and amplitude of the input vibration waves as consistent as possible so that the same theoretical enhancement effect of the circuitry model is achieved. An identical experimental test was implemented with vibration conditions of 75 Hz-2.198 g. The fabricated harvester quickly charged the 22 V-0.022 F ultracapacitor bank to 5 V in 24 min. The maximum open circuit voltage and output power, respectively, were 10.4 V and 0.304 mW. This maximum charging power was 11.69 times higher than that of a single film. This special power supply can replace batteries to power low-power electronics deployed in vibrating environments, thus reducing the maintenance costs of equipment and environmental pollution rates.

5.
Materials (Basel) ; 15(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36363442

RESUMEN

Structural health monitoring (SHM) plays a critical role in ensuring the safety of large-scale structures during their operational lifespan, such as pipelines, railways and buildings. In the last few years, radio frequency identification (RFID) combined with sensors has attracted increasing interest in SHM for the advantages of being low cost, passive and maintenance-free. Numerous scientific papers have demonstrated the great potential of RFID sensing technology in SHM, e.g., RFID vibration and crack sensing systems. Although considerable progress has been made in RFID-based SHM, there are still numerous scientific challenges to be addressed, for example, multi-parameters detection and the low sampling rate of RFID sensing systems. This paper aims to promote the application of SHM based on RFID from laboratory testing or modelling to large-scale realistic structures. First, based on the analysis of the fundamentals of the RFID sensing system, various topologies that transform RFID into passive wireless sensors are analyzed with their working mechanism and novel applications in SHM. Then, the technical challenges and solutions are summarized based on the in-depth analysis. Lastly, future directions about printable flexible sensor tags and structural health prognostics are suggested. The detailed discussion will be instructive to promote the application of RFID in SHM.

6.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36236310

RESUMEN

This work studies the feasibility of using a battery-less Near-Field Communication (NFC) potentiostat for the next generation of electrochemical point-of-care sensors. A design based on an NFC microchip, a microcontroller, and a custom potentiostat based on an operational amplifier is presented. A proof-of-concept prototype has been designed and used to quantify glucose concentration using commercial glucose test strips from chronoamperometry measurements. The device is harvested and the sensor is read using a mobile phone. The prototype uses an antenna loop covered with ferrite sheets to ensure stable operation of the electronics when the mobile phone is used as reader. The use of ferrite reduces the detuning caused by the proximity of the metal parts of the mobile phone. A comparison with a commercial glucometer device is provided. Results obtained using a commercial glucometer and those provided by the proposed potentiostat show an excellent agreement.


Asunto(s)
Suministros de Energía Eléctrica , Sistemas de Atención de Punto , Compuestos Férricos , Glucosa
7.
Sensors (Basel) ; 22(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35808252

RESUMEN

Energy harvesting is an effective technique for prolonging the lifetime of Internet of Things devices and Wireless Sensor Networks. In applications such as environmental sensing, which demands a deploy-and-forget architecture, energy harvesting is an unavoidable technology. Thermal energy is one of the most widely used sources for energy harvesting. A thermal energy harvester can convert a thermal gradient into electrical energy. Thus, the temperature difference between the soil and air could act as a vital source of energy for an environmental sensing device. In this paper, we present a proof-of-concept design of an environmental sensing node that harvests energy from soil temperature and uses the DASH7 communication protocol for connectivity. We evaluate the soil temperature and air temperature based on the data collected from two locations: one in Belgium and the other in Iceland. Using these datasets, we calculate the amount of energy that is producible from both of these sites. We further design power management and monitoring circuit and use a supercapacitor as the energy storage element, hence making it battery-less. Finally, we deploy the proof-of-concept prototype in the field and evaluate its performance. We demonstrate that the system can harvest, on average, 178.74 mJ and is enough to perform at least 5 DASH7 transmissions and 100 sensing tasks per day.


Asunto(s)
Suelo , Tecnología Inalámbrica , Suministros de Energía Eléctrica , Fenómenos Físicos , Temperatura
8.
Sensors (Basel) ; 23(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36616805

RESUMEN

In this paper, a new method for the wireless detection of liquid level is proposed by integrating a capacitive IDC-sensing element with a passive three-port RFID-sensing architecture. The sensing element transduces changes in the liquid level to corresponding fringe-capacitance variations, which alters the phase of the RFID backscattered signal. Variation in capacitance also changes the resonance magnitude of the sensing element, which is associated with a high phase transition. This change in the reactive phase is used as a sensing parameter by the RFID architecture for liquid-level detection. Practical measurements were conducted in a real-world scenario by placing the sensor at a distance of approximately 2 m (with a maximum range of about 7 m) from the RFID reader. The results show that the sensor node offers a high sensitivity of 2.15°/mm to the liquid-level variation. Additionally, the sensor can be used within or outside the container for the accurate measurement of conductive- or non-conductive-type liquids due to the use of polyethylene coating on the sensitive element. The proposed sensor increases the reliability of the current level sensors by eliminating the internal power source as well as complex signal-processing circuits, and it offers real-time response, linearity, high sensitivity, and excellent repeatability, which are suitable for widespread deployment of sensor node applications.

9.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34884150

RESUMEN

In this paper, we propose a method of wirelessly torque transfer (WTT) and power (WPT) to a drug pump, one of implantable medical devices. By using the magnetic field generated by the WPT system to transfer torque and power to the receiving coil at the same time, applications that previously used power from the battery can be operated without a battery. The proposed method uses a receiving coil with magnetic material as a motor, and can generate torque in a desired direction using the magnetic field from the transmitting coil. The WPT system was analyzed using a topology that generates a constant current for stable torque generation. In addition, a method for detecting the position of the receiving coil without using additional power was proposed. Through simulations and experiments, it was confirmed that WTT and WPT were possible at the same time, and in particular, it was confirmed that WTT was stably possible.


Asunto(s)
Preparaciones Farmacéuticas , Tecnología Inalámbrica , Suministros de Energía Eléctrica , Prótesis e Implantes , Torque
10.
Micromachines (Basel) ; 12(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34357229

RESUMEN

We present a survey on battery-less Radio Frequency Identification (RFID-based wireless sensors that have emerged in the past several years. We discuss the evolution of RFID turning into wireless sensors. Moreover, we talk about different components of these battery-less RFID-based wireless sensors, five main topologies that transform a simple RFID chip into a battery-less wireless sensor, and state-of-the-art implementations of these topologies. In battery-less wireless sensors, the read range is of key importance. Hence, we discuss how each component of the sensor plays its role in determining the read range and how each topology exploits these components to optimize read range, complexity, and/or cost. Additionally, we discuss potential future directions that can help provide improvements in RFID-based wireless sensor technology.

11.
Sensors (Basel) ; 21(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34300641

RESUMEN

For the first time, this paper reports a smart museum archive box that features a fully integrated wireless powered temperature and humidity sensor. The smart archive box has been specifically developed for microclimate environmental monitoring of stored museum artifacts in cultural heritage applications. The developed sensor does not require a battery and is wirelessly powered using Near Field Communications (NFC). The proposed solution enables a convenient means for wireless sensing with the operator by simply placing a standard smartphone in close proximity to the cardboard archive box. Wireless sensing capability has the advantage of enabling long-term environmental monitoring of the contents of the archive box without having to move and open the box for reading or battery replacement. This contributes to a sustainable preventive conservation strategy and avoids the risk of exposing the contents to the external environment, which may result in degradation of the stored artifacts. In this work, a low-cost and fully integrated NFC sensor has been successfully developed and demonstrated. The developed sensor is capable of wirelessly measuring temperature and relative humidity with a mean error of 0.37 °C and ±0.35%, respectively. The design has also been optimized for low power operation with a measured peak DC power consumption of 900 µW while yielding a 4.5 cm wireless communication range. The power consumption of the NFC sensor is one of the lowest found in the literature. To the author's knowledge, the NFC sensor proposed in this paper is the first reporting of a smart archive box that is wirelessly powered and uniquely integrated within a cardboard archive box.


Asunto(s)
Artefactos , Tecnología Inalámbrica , Humedad , Museos , Temperatura
12.
IEEE J Solid-State Circuits ; 56(6): 1837-1848, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34176956

RESUMEN

A single-inductor self-starting boost converter is presented suitable for thermoelectric energy harvesting from human body heat. In order to extract maximum energy from a thermoelectric generator (TEG) at small temperature gradients, a loss-aware maximum power point tracking (MPPT) scheme was developed that enables the harvester to achieve high end-to-end efficiency at low input voltages. The boost converter is implemented in a 0.18 µm CMOS technology and is more than 75% efficient for a matched input voltage range of 15 mV-100 mV, with a peak efficiency of 82%. Enhanced power extraction enables the converter to sustain operation at an input voltage as low as 3.5 mV. In addition, the boost converter self-starts with a minimum TEG voltage of 50 mV leveraging a dual-path architecture without using additional off-chip components.

13.
Adv Sci (Weinh) ; 7(13): 2000069, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32670756

RESUMEN

The soft millirobot is a promising candidate for emerging applications in various in-vivo/vitro biomedical settings. Despite recent success in its design and actuation, the absence of sensing ability makes it still far from being a reality. Here, a radio frequency identification (RFID) based battery-less soft millirobot that can move, sense, and communicate remotely by coupling the magnetic and piezoelectric effects is reported. This design integrates the robot actuation and power generation units within a thin multilayer film (<0.5 mm), i.e., a lower magnetic composite limb decorated with multiple feet imparts locomotion and a flexible piezoceramic composite film recovers energy simultaneously. Under a trigger of external magnetic guidance, the millirobot can achieve remote locomotion, environment monitoring, and wireless communication with no requirement of any on-board battery or external wired power supply. Furthermore, this robot demonstrates the sensing capability in measuring environment temperature and contact interface by two different sensing models, i.e., carried-on and build-in sensing mode, respectively. This research represents a remarkable advance in the emerging area of untethered soft robotics, benefiting a broad spectrum of promising applications, such as in-body monitoring, diagnosis, and drug delivery.

14.
Sensors (Basel) ; 19(9)2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31027382

RESUMEN

Recently, radio frequency (RF) energy harvesting (RFEH) has become a promising technology for a battery-less sensor module. The ambient RF radiation from the available sources is captured by receiver antennas and converted to electrical energy, which is used to supply smart sensor modules. In this paper, an enhanced method to improve the efficiency of the RFEH system using strongly coupled electromagnetic resonance technology was proposed. A relay resonator was added between the reader and tag antennas to improve the wireless power transmission efficiency to the sensor module. The design of the relay resonator was based on the resonant technique and near-field magnetic coupling concept to improve the communication distance and the power supply for a sensor module. It was designed such that the self-resonant frequencies of the reader antenna, tag antenna, and the relay resonator are synchronous at the HF frequency (13.56MHz). The proposed method was analyzed using Thevenin equivalent circuit, simulated and experimental validated to evaluate its performance. The experimental results showed that the proposed harvesting method is able to generate a great higher power up to 10 times than that provided by conventional harvesting methods without a relay resonator. Moreover, as an empirical feasibility test of the proposed RF energy harvesting device, a smart sensor module which is placed inside a meat box was developed. It was utilized to collect vital data, including temperature, relative humidity and gas concentration, to monitor the freshness of meat. Overall, by exploiting relay resonator, the proposed smart sensor tag could continuously monitor meat freshness without any batteries at the innovative maximum distance of approximately 50 cm.


Asunto(s)
Análisis de los Alimentos/métodos , Ondas de Radio , Análisis de los Alimentos/instrumentación , Gases/análisis , Humedad , Carne/análisis , Temperatura , Compuestos Orgánicos Volátiles/análisis , Tecnología Inalámbrica
15.
Sensors (Basel) ; 19(7)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979009

RESUMEN

This paper presents a color-based classification system for grading the ripeness of fruit using a battery-less Near Field Communication (NFC) tag. The tag consists of a color sensor connected to a low-power microcontroller that is connected to an NFC chip. The tag is powered by the energy harvested from the magnetic field generated by a commercial smartphone used as a reader. The raw RGB color data measured by the colorimeter is converted to HSV (hue, saturation, value) color space. The hue angle and saturation are used as features for classification. Different classification algorithms are compared for classifying the ripeness of different fruits in order to show the robustness of the system. The low cost of NFC chips means that tags with sensing capability can be manufactured economically. In addition, nowadays, most commercial smartphones have NFC capability and thus a specific reader is not necessary. The measurement of different samples obtained on different days is used to train the classification algorithms. The results of training the classifiers have been saved to the cloud. A mobile application has been developed for the prediction based on a table-based method, where the boundary decision is downloaded from a cloud service for each product. High accuracy, between 80 and 93%, is obtained depending on the kind of fruit and the algorithm used.


Asunto(s)
Técnicas Biosensibles , Color , Frutas/química , Tecnología Inalámbrica , Algoritmos , Suministros de Energía Eléctrica , Frutas/crecimiento & desarrollo , Humanos , Dispositivo de Identificación por Radiofrecuencia/métodos
16.
J Control Release ; 286: 224-230, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30055214

RESUMEN

We prepared an implantable device of small volume (SID) that is enabled with on-demand, pulsatile drug release. The device was designed to be actuated via a magnetic field; hence, there was no need for a battery. The device was actuated when the magnet was applied from the outside and infused the drug solution outward via the outlet ports in the device. When there was no external magnetic field, no drug was released. In this work, we varied the amount of delivered drug by varying the number of outlet ports. Thus, as the number of outlet ports increased from one to three, the average amount of drug release per actuation increased from 60.7 ±â€¯1.79 µg to 122.6 ±â€¯1.27 µg. In addition, when the SID with three outlet ports (SID3) was actuated once and thrice, the amount of drug release increased from 123.0 ±â€¯6.99 µg to 357.3 ±â€¯9.70 µg, respectively, which was reproducible over 30 days. When the SID3 was implanted in living animals for 30 days, plasma drug concentration was measured to be 92-146 ng ml-1 or 210-363 ng ml-1 when the device was actuated once or three consecutive times, respectively.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Implantes de Medicamentos/química , Preparaciones Farmacéuticas/administración & dosificación , Animales , Liberación de Fármacos , Diseño de Equipo , Campos Magnéticos , Magnetismo/instrumentación , Masculino , Preparaciones Farmacéuticas/sangre , Farmacocinética , Ratas Sprague-Dawley
17.
Ultrasound Med Biol ; 43(3): 561-578, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28038789

RESUMEN

Totally implantable wireless ultrasonic blood flowmeters provide direct-access chronic vessel monitoring in hard-to-reach places without using wired bedside monitors or imaging equipment. Although wireless implantable Doppler devices are accurate for most applications, device size and implant lifetime remain vastly underdeveloped. We review past and current approaches to miniaturization and implant lifetime extension for wireless implantable Doppler devices and propose approaches to reduce device size and maximize implant lifetime for the next generation of devices. Additionally, we review current and past approaches to accurate blood flow measurements. This review points toward relying on increased levels of monolithic customization and integration to reduce size. Meanwhile, recommendations to maximize implant lifetime should include alternative sources of power, such as transcutaneous wireless power, that stand to extend lifetime indefinitely. Coupling together the results will pave the way for ultra-miniaturized totally implantable wireless blood flow monitors for truly chronic implantation.


Asunto(s)
Flujómetros , Miniaturización/instrumentación , Prótesis e Implantes , Flujo Sanguíneo Regional/fisiología , Ultrasonografía Doppler/instrumentación , Tecnología Inalámbrica/instrumentación , Diseño de Equipo , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA