Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Host Microbe ; 32(5): 739-754.e4, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38565143

RESUMEN

Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to the insertion of "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota, and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain-level variation within the microbiota impacts human health.


Asunto(s)
Elementos Transponibles de ADN , Metagenómica , Humanos , Metagenómica/métodos , Elementos Transponibles de ADN/genética , Bacteroides/genética , Evolución Molecular , Genoma Bacteriano , Microbiota/genética , Microbioma Gastrointestinal/genética , Bacterias/genética , Bacterias/clasificación
2.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674013

RESUMEN

The universality of DNA methylation as an epigenetic regulatory mechanism belongs to all biological kingdoms. However, while eukaryotic systems have been the primary focus of DNA methylation studies, the molecular mechanisms in prokaryotes are less known. Nevertheless, DNA methylation in prokaryotes plays a pivotal role in many cellular processes such as defense systems against exogenous DNA, cell cycle dynamics, and gene expression, including virulence. Thanks to single-molecule DNA sequencing technologies, genome-wide identification of methylated DNA is becoming feasible on a large scale, providing the possibility to investigate more deeply the presence, variability, and roles of DNA methylation. Here, we present an overview of the multifaceted roles of DNA methylation in prokaryotes and suggest research directions and tools which can enable us to better understand the contribution of DNA methylation to prokaryotic genome evolution and adaptation. In particular, we emphasize the need to understand the presence and role of transgenerational inheritance, as well as the impact of epigenomic signatures on adaptation and genome evolution. Research directions and the importance of novel computational tools are underlined.


Asunto(s)
Bacterias , Epigenómica , Evolución Molecular , Genoma Bacteriano , Bacterias/genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos
3.
Mol Biol Evol ; 38(10): 4135-4148, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34003286

RESUMEN

Horizontal gene transfer (HGT) is a major driving force for bacterial evolution. To avoid the deleterious effects due to the unregulated expression of newly acquired foreign genes, bacteria have evolved specific proteins named xenogeneic silencers to recognize foreign DNA sequences and suppress their transcription. As there is considerable diversity in genomic base compositions among bacteria, how xenogeneic silencers distinguish self- from nonself DNA in different bacteria remains poorly understood. This review summarizes the progress in studying the DNA binding preferences and the underlying molecular mechanisms of known xenogeneic silencer families, represented by H-NS of Escherichia coli, Lsr2 of Mycobacterium, MvaT of Pseudomonas, and Rok of Bacillus. Comparative analyses of the published data indicate that the differences in DNA recognition mechanisms enable these xenogeneic silencers to have clear characteristics in DNA sequence preferences, which are further correlated with different host genomic features. These correlations provide insights into the mechanisms of how these xenogeneic silencers selectively target foreign DNA in different genomic backgrounds. Furthermore, it is revealed that the genomic AT contents of bacterial species with the same xenogeneic silencer family proteins are distributed in a limited range and are generally lower than those species without any known xenogeneic silencers in the same phylum/class/genus, indicating that xenogeneic silencers have multifaceted roles on bacterial genome evolution. In addition to regulating horizontal gene transfer, xenogeneic silencers also act as a selective force against the GC to AT mutational bias found in bacterial genomes and help the host genomic AT contents maintained at relatively low levels.


Asunto(s)
Proteínas Bacterianas , Proteínas de Unión al ADN , Proteínas Bacterianas/genética , ADN , ADN Bacteriano , Proteínas de Unión al ADN/genética , Silenciador del Gen , Transferencia de Gen Horizontal , Genoma Bacteriano , Humanos
4.
Mol Biol Evol ; 36(12): 2714-2736, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31350897

RESUMEN

Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of highly resistant, dormant endospores. Endospores allow environmental persistence, dissemination and for pathogens, are also infection vehicles. In both the model Bacillus subtilis, an aerobic organism, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes. Their expression is coordinated between the forespore and the mother cell, the two cells that participate in the process, and is kept in close register with the course of morphogenesis. The evolutionary mechanisms by which sporulation emerged and evolved in these two species, and more broadly across Firmicutes, remain largely unknown. Here, we trace the origin and evolution of sporulation using the genes known to be involved in the process in B. subtilis and C. difficile, and estimating their gain-loss dynamics in a comprehensive bacterial macroevolutionary framework. We show that sporulation evolution was driven by two major gene gain events, the first at the base of the Firmicutes and the second at the base of the B. subtilis group and within the Peptostreptococcaceae family, which includes C. difficile. We also show that early and late sporulation regulons have been coevolving and that sporulation genes entail greater innovation in B. subtilis with many Bacilli lineage-restricted genes. In contrast, C. difficile more often recruits new sporulation genes by horizontal gene transfer, which reflects both its highly mobile genome, the complexity of the gut microbiota, and an adjustment of sporulation to the gut ecosystem.


Asunto(s)
Bacillus subtilis/genética , Evolución Biológica , Clostridioides difficile/genética , Esporas Bacterianas , Secuencia de Aminoácidos , Genes Bacterianos
5.
Mol Biol Evol ; 36(3): 562-574, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30608550

RESUMEN

Multipartite genomes, containing at least two large replicons, are found in diverse bacteria; however, the advantage of this genome structure remains incompletely understood. Here, we perform comparative genomics of hundreds of finished ß-proteobacterial genomes to gain insights into the role and emergence of multipartite genomes. Almost all essential secondary replicons (chromids) of the ß-proteobacteria are found in the family Burkholderiaceae. These replicons arose from just two plasmid acquisition events, and they were likely stabilized early in their evolution by the presence of core genes. On average, Burkholderiaceae genera with multipartite genomes had a larger total genome size, but smaller chromosome, than genera without secondary replicons. Pangenome-level functional enrichment analyses suggested that interreplicon functional biases are partially driven by the enrichment of secondary replicons in the accessory pangenome fraction. Nevertheless, the small overlap in orthologous groups present in each replicon's pangenome indicated a clear functional separation of the replicons. Chromids appeared biased to environmental adaptation, as the functional categories enriched on chromids were also overrepresented on the chromosomes of the environmental genera (Paraburkholderia and Cupriavidus) compared with the pathogenic genera (Burkholderia and Ralstonia). Using ancestral state reconstruction, it was predicted that the rate of accumulation of modern-day genes by chromids was more rapid than the rate of gene accumulation by the chromosomes. Overall, the data are consistent with a model where the primary advantage of secondary replicons is in facilitating increased rates of gene acquisition through horizontal gene transfer, consequently resulting in replicons enriched in genes associated with adaptation to novel environments.


Asunto(s)
Burkholderiaceae/genética , Genoma Bacteriano , Replicón , Adaptación Biológica/genética , Transferencia de Gen Horizontal , Tamaño del Genoma , Selección Genética
6.
Genome Biol Evol ; 10(1): 108-124, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29272410

RESUMEN

Prokaryote genomes are the result of a dynamic flux of genes, with increases achieved via horizontal gene transfer and reductions occurring through gene loss. The ecological and selective forces that drive this genomic flexibility vary across species. Bacillus subtilis is a naturally competent bacterium that occupies various environments, including plant-associated, soil, and marine niches, and the gut of both invertebrates and vertebrates. Here, we quantify the genomic diversity of B. subtilis and infer the genome dynamics that explain the high genetic and phenotypic diversity observed. Phylogenomic and comparative genomic analyses of 42 B. subtilis genomes uncover a remarkable genome diversity that translates into a core genome of 1,659 genes and an asymptotic pangenome growth rate of 57 new genes per new genome added. This diversity is due to a large proportion of low-frequency genes that are acquired from closely related species. We find no gene-loss bias among wild isolates, which explains why the cloud genome, 43% of the species pangenome, represents only a small proportion of each genome. We show that B. subtilis can acquire xenologous copies of core genes that propagate laterally among strains within a niche. While not excluding the contributions of other mechanisms, our results strongly suggest a process of gene acquisition that is largely driven by competence, where the long-term maintenance of acquired genes depends on local and global fitness effects. This competence-driven genomic diversity provides B. subtilis with its generalist character, enabling it to occupy a wide range of ecological niches and cycle through them.


Asunto(s)
Bacillus subtilis/genética , Variación Genética , Proteínas Bacterianas/genética , Evolución Molecular , Transferencia de Gen Horizontal , Genes Bacterianos , Genoma Bacteriano , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA