Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273455

RESUMEN

The relationships between plants and bacteria are essential in agroecosystems and bioinoculant development. The leaf endophytic Pseudomonas protegens E1BL2 was previously isolated from giant Jala maize, which is a native Zea mays landrace of Nayarit, Mexico. Using different Mexican maize landraces, this work evaluated the strain's plant growth promotion and biocontrol against eight phytopathogenic fungi in vitro and greenhouse conditions. Also, a plant field trial was conducted on irrigated fields using the hybrid maize Supremo. The grain productivity in this assay increased compared with the control treatment. The genome analysis of P. protegens E1BL2 showed putative genes involved in metabolite synthesis that facilitated its beneficial roles in plant health and environmental adaptation (bdhA, acoR, trpE, speE, potA); siderophores (ptaA, pchC); and extracellular enzymes relevant for PGPB mechanisms (cel3, chi14), protection against oxidative stress (hscA, htpG), nitrogen metabolism (nirD, nit1, hmpA), inductors of plant-induced systemic resistance (ISR) (flaA, flaG, rffA, rfaP), fungal biocontrol (phlD, prtD, prnD, hcnA-1), pest control (vgrG-1, higB-2, aprE, pslA, ppkA), and the establishment of plant-bacteria symbiosis (pgaA, pgaB, pgaC, exbD). Our findings suggest that P. protegens E1BL2 significantly promotes maize growth and offers biocontrol benefits, which highlights its potential as a bioinoculant.


Asunto(s)
Enfermedades de las Plantas , Pseudomonas , Zea mays , Zea mays/microbiología , Zea mays/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Hongos/genética , Agricultura/métodos , Genómica/métodos , Genoma Bacteriano
2.
DNA Res ; 31(4)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39127874

RESUMEN

In Mycobacterium tuberculosis (MTB) control, whole genome sequencing-based molecular drug susceptibility testing (molDST-WGS) has emerged as a pivotal tool. However, the current reliance on a single-strain reference limits molDST-WGS's true potential. To address this, we introduce a new pan-lineage reference genome, 'MtbRf'. We assembled 'unmapped' reads from 3,614 MTB genomes (751 L1; 881 L2; 1,700 L3; and 282 L4) into 35 shared, annotated contigs (54 coding sequences [CDSs]). We constructed MtbRf through: (1) searching for contig homologues among genome database that precipitate results uniquely within Mycobacteria genus; (2) comparing genomes with H37Rv ('lift-over') to define 18 insertions; and (3) filling gaps in H37Rv with insertions. MtbRf adds 1.18% sequences to H37rv, salvaging >60% of previously unmapped reads. Transcriptomics confirmed gene expression of new CDSs. The new variants provided a moderate DST predictive value (AUROC 0.60-0.75). MtbRf thus unveils previously hidden genomic information and lays the foundation for lineage-specific molDST-WGS.


Asunto(s)
Genoma Bacteriano , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Secuenciación Completa del Genoma/métodos , Humanos , Pruebas de Sensibilidad Microbiana , Tuberculosis/microbiología , Tuberculosis/diagnóstico
3.
Antibiotics (Basel) ; 13(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39200016

RESUMEN

The global rise of antimicrobial resistance (AMR) presents a critical challenge necessitating the discovery of novel antimicrobial agents. Mangrove microbes are valuable sources of new antimicrobial compounds. This study reports the discovery of a potent antimicrobial peptide (AMP) from Bacillus paralicheniformis NNS4-3, isolated from mangrove sediment, exhibiting significant activity against methicillin-resistant Staphylococcus aureus (MRSA). The AMP demonstrated a minimum inhibitory concentration ranging from 1 to 16 µg/mL in the tested bacteria and exhibited bactericidal effects at higher concentrations. Structural analysis revealed a bacitracin-like configuration and the peptide acted by disrupting bacterial membranes in a time- and concentration-dependent manner. The AMP maintained stability under heat, proteolytic enzymes, surfactants, and varying pH treatments. The ten biosynthetic gene clusters (BGCs) of secondary metabolites were found in the genome. Detailed sequence comparison of the predicted bacitracin BGC indicated distinct DNA sequences compared to previously reported strains. Although the antibiotic resistance genes were found, this strain was susceptible to antibiotics. Our findings demonstrated the potential of Bacillus paralicheniformis NNS4-3 and its AMP as a promising agent in combating AMR. The genetic information could be pivotal for future applications in the healthcare industry, emphasizing the need for continued exploration of marine microbial diversity in drug discovery.

4.
Methods Mol Biol ; 2843: 37-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141293

RESUMEN

The molecular pathogenesis of Gram-negative bacteria remains a complex and incompletely understood phenomenon. Various factors are believed to contribute to the pathogenicity of these bacteria. One key mechanism utilized by Gram-negative bacteria is the production of outer membrane vesicles (OMVs), which are small spherical particles derived from the bacterial outer membrane. These OMVs are crucial in delivering virulence factors to the host, facilitating host-pathogen interactions. Within these OMVs, small regulatory RNAs (sRNAs) have been identified as important players in modulating the host immune response. One of the main challenges in studying OMVs and their cargo of sRNAs is the difficulty in isolating and purifying sufficient quantities of OMVs, as well as accurately predicting genuine sRNAs computationally. In this chapter, we present protocols aimed at overcoming these obstacles.


Asunto(s)
Membrana Externa Bacteriana , Biología Computacional , ARN Pequeño no Traducido , Biología Computacional/métodos , ARN Pequeño no Traducido/genética , Membrana Externa Bacteriana/metabolismo , ARN Bacteriano/genética , Bacterias Gramnegativas/genética
5.
Int J Biol Macromol ; 278(Pt 4): 135065, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39187111

RESUMEN

The application of CRISPR-Cas9 ribonucleoprotein (RNP) for gene editing is commonly used in plants and animals, but its application in bacteria has not been reported. In this study, we employed DNA single-strand binding protein (SSB) to construct an SSB/CRISPR-Cas9 RNP-editing system for non-homologous recombination and homologous recombination gene editing of the upp gene in bacteria. The RNP targeting the upp gene, along with SSB, was introduced into the protoplasts of Escherichia coli, Pseudomonas, and Bacillus subtilis. Transformants were obtained on plates containing 5-fluorouracil (5-FU) with gene editing efficiencies (percentage of transformants relative to the number of protoplasts) of 9.75 %, 5.02 %, and 8.37 %, respectively, and sequencing analysis confirmed 100 % non-homologous recombination. When RNP, SSB, and a 100-nucleotide single-stranded oligodeoxynucleotide (ssODN) donor were introduced into the protoplasts of these bacteria, transformants were obtained with editing efficiencies of 45.11 %, 30.13 %, and 27.18 %, respectively, and sequencing confirmed 100 % homologous recombination knockout of the upp gene. Additionally, introducing RNP, SSB, and a 100 base-pair double-stranded oligodeoxynucleotide (dsODN) donor containing a tetracycline resistance gene (tetR-dsODN) resulted in transformants on 5-FU plates with editing efficiencies of 35.94 %, 22.46 %, and 19.08 %, respectively, with sequencing confirming 100 % homologous recombination replacement of the upp gene with tetR. These results demonstrate that the SSB/CRISPR-Cas9 RNP system can efficiently, simply, and rapidly edit bacterial genomes without the need for plasmids. This study is the first to report the use of RNP-based gene editing in bacteria.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Ribonucleoproteínas , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Protoplastos/metabolismo , Bacterias/genética , Escherichia coli/genética , Recombinación Homóloga
6.
Mol Genet Genomics ; 299(1): 72, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39060647

RESUMEN

Codon usage bias (CUB), the uneven usage of synonymous codons encoding the same amino acid, differs among genes within and across bacteria genomes. CUB is known to be influenced by gene expression and accordingly, CUB differs between the high-expression and low-expression genes in several bacteria. In this article, we have extended codon usage study considering gene essentiality as a feature. Using machine learning (ML) based approaches, we have analysed Relative Synonymous Codon Usage (RSCU) values between essential and non-essential genes in Escherichia coli and thirty-four other bacterial genomes whose gene essentiality features were available in public databases. We observed significant differences in codon usage patterns between essential and non-essential genes for majority of the bacterial genomes and accordingly, ML based classifiers achieved high area under curve (AUC) scores, with a minimum score of 70.0 across twenty-eight organisms. Further, importance of the codons towards classifying genes found to differ among the codons in each genome. Arg codon CGT and Gly codon GGT were observed to be the most preferred codons among essential genes in Escherichia coli. Interestingly, some of the codons like CGT, ATA, GGT and GGG observed to be contributing consistently towards classifying essential genes across thirty-five bacteria genomes studied. In other hand, codons TGY and CAY encoding amino acids Cys and His respectively were among the least contributing codons towards classification among all these bacteria. This study demonstrates the gene essentiality based differences in synonymous codon usage in bacteria genomes and presents a common codon usage pattern across bacteria.


Asunto(s)
Uso de Codones , Escherichia coli , Genes Esenciales , Aprendizaje Automático , Genes Esenciales/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Genes Bacterianos , Codón/genética , Bacterias/genética , Bacterias/clasificación
7.
Microb Genom ; 10(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980151

RESUMEN

The use of k-mers to capture genetic variation in bacterial genome-wide association studies (bGWAS) has demonstrated its effectiveness in overcoming the plasticity of bacterial genomes by providing a comprehensive array of genetic variants in a genome set that is not confined to a single reference genome. However, little attempt has been made to interpret k-mers in the context of genome rearrangements, partly due to challenges in the exhaustive and high-throughput identification of genome structure and individual rearrangement events. Here, we present GWarrange, a pre- and post-bGWAS processing methodology that leverages the unique properties of k-mers to facilitate bGWAS for genome rearrangements. Repeat sequences are common instigators of genome rearrangements through intragenomic homologous recombination, and they are commonly found at rearrangement boundaries. Using whole-genome sequences, repeat sequences are replaced by short placeholder sequences, allowing the regions flanking repeats to be incorporated into relatively short k-mers. Then, locations of flanking regions in significant k-mers are mapped back to complete genome sequences to visualise genome rearrangements. Four case studies based on two bacterial species (Bordetella pertussis and Enterococcus faecium) and a simulated genome set are presented to demonstrate the ability to identify phenotype-associated rearrangements. GWarrange is available at https://github.com/DorothyTamYiLing/GWarrange.


Asunto(s)
Reordenamiento Génico , Genoma Bacteriano , Estudio de Asociación del Genoma Completo , Fenotipo , Estudio de Asociación del Genoma Completo/métodos , Programas Informáticos , Variación Genética
8.
J Infect Public Health ; 17(7): 102463, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38833914

RESUMEN

BACKGROUND: Enterococcus avium (E. avium) is a Gram-positive nosocomial pathogen that is commonly isolated from the alimentary tract. The objective of this functional genomics study was to identify the resistant genes by analyzing the genome of E. avium IRMC1622a, a type of bacteria found in feces collected from a patient at a Saudi Arabian tertiary hospital. METHODS: The bacterial strain IRMC1622a was identified by 16 S rRNA sequencing as Enterococcus sp. The resistance phenomics were performed using VITEK® 2, and morphological analysis was achieved using a scanning electron microscope (SEM). Finally, the whole bacterial genome of the bacterial strain IRMC1622a was subjected to sequencing during October 2023 using Oxford Nanopore long-read sequencing technology, and mining for resistant genes. RESULTS: The results of antimicrobial resistant phenomics indicated that the IRMC1622a strain was sensitive to all tested antimicrobial agents except for erythromycin, and the same result was confirmed by genomic analysis in addition to other classes of antibiotics. SEM showed E. avium IRMC1622a is ovoid shape, in single cells (L 1.2797 ± 0.1490 µm), in pairs (L 1.7333 ± 0.1054 µm), and in chains (L 2.44033 ± 0.1978 µm). The E. avium IRMC1622a genome has 14 (in CARD) antimicrobial resistance genes that were identified with several mechanisms of antimicrobial resistance, such as the efflux pump and conferring antibiotic resistance. The present study revealed that the E. avium IRMC1622a genome contains a high number of genes associated with virulence factors, and 14 matched pathogenic protein families and predicted as human pathogen (probability score 0.855). We report two (ISEnfa4 and ISEfa5) mobile genetic elements for the first time in the E. avium genome. CONCLUSIONS: The study concludes that E. avium IRMC1622a is susceptible to all tested antibacterials except erythromycin. The IRMC1622a has 14 genes encoding antimicrobial resistance mechanisms, including the efflux pump and conferring antibiotic resistance. This could indicate a potential rise in E. avium resistance in healthcare facilities. These observations may raise concerns regarding E. avium resistance in healthcare. We need more research to understand the pathophysiology of E. avium, which leads to hospital-acquired infections.


Asunto(s)
Antibacterianos , Heces , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Humanos , Antibacterianos/farmacología , Heces/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Genómica , Arabia Saudita , Enterococcus/genética , Enterococcus/efectos de los fármacos , Enterococcus/aislamiento & purificación , ARN Ribosómico 16S/genética , Farmacorresistencia Bacteriana/genética , Secuenciación Completa del Genoma , Centros de Atención Terciaria , Infección Hospitalaria/microbiología , Fenotipo
9.
Microb Genom ; 10(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833287

RESUMEN

It is now possible to assemble near-perfect bacterial genomes using Oxford Nanopore Technologies (ONT) long reads, but short-read polishing is usually required for perfection. However, the effect of short-read depth on polishing performance is not well understood. Here, we introduce Pypolca (with default and careful parameters) and Polypolish v0.6.0 (with a new careful parameter). We then show that: (1) all polishers other than Pypolca-careful, Polypolish-default and Polypolish-careful commonly introduce false-positive errors at low read depth; (2) most of the benefit of short-read polishing occurs by 25× depth; (3) Polypolish-careful almost never introduces false-positive errors at any depth; and (4) Pypolca-careful is the single most effective polisher. Overall, we recommend the following polishing strategies: Polypolish-careful alone when depth is very low (<5×), Polypolish-careful and Pypolca-careful when depth is low (5-25×), and Polypolish-default and Pypolca-careful when depth is sufficient (>25×).


Asunto(s)
Genoma Bacteriano , Nanoporos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nanoporos/métodos , Bacterias/genética , Bacterias/clasificación , Programas Informáticos , Genómica/métodos
10.
Microbiol Resour Announc ; 13(6): e0011124, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38727234

RESUMEN

We present complete genome sequences from 30 bacterial species that can be used to construct defined synthetic communities that stably form in the laboratory under controlled conditions.

11.
Cell Host Microbe ; 32(5): 739-754.e4, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38565143

RESUMEN

Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to the insertion of "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota, and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain-level variation within the microbiota impacts human health.


Asunto(s)
Elementos Transponibles de ADN , Metagenómica , Humanos , Metagenómica/métodos , Elementos Transponibles de ADN/genética , Bacteroides/genética , Evolución Molecular , Genoma Bacteriano , Microbiota/genética , Microbioma Gastrointestinal/genética , Bacterias/genética , Bacterias/clasificación
12.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674013

RESUMEN

The universality of DNA methylation as an epigenetic regulatory mechanism belongs to all biological kingdoms. However, while eukaryotic systems have been the primary focus of DNA methylation studies, the molecular mechanisms in prokaryotes are less known. Nevertheless, DNA methylation in prokaryotes plays a pivotal role in many cellular processes such as defense systems against exogenous DNA, cell cycle dynamics, and gene expression, including virulence. Thanks to single-molecule DNA sequencing technologies, genome-wide identification of methylated DNA is becoming feasible on a large scale, providing the possibility to investigate more deeply the presence, variability, and roles of DNA methylation. Here, we present an overview of the multifaceted roles of DNA methylation in prokaryotes and suggest research directions and tools which can enable us to better understand the contribution of DNA methylation to prokaryotic genome evolution and adaptation. In particular, we emphasize the need to understand the presence and role of transgenerational inheritance, as well as the impact of epigenomic signatures on adaptation and genome evolution. Research directions and the importance of novel computational tools are underlined.


Asunto(s)
Bacterias , Epigenómica , Evolución Molecular , Genoma Bacteriano , Bacterias/genética , Metilación de ADN , Epigénesis Genética , Epigenómica/métodos
13.
J Comp Pathol ; 208: 54-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38211467

RESUMEN

The aim of this study was to describe the pathology in seals from which Listeria monocytogenes was isolated and investigate if the lesions' nature and severity were related to the phylogeny of isolates. L. monocytogenes was isolated from 13 of 50 (26%) dead grey seal (Halichoerus grypus) pups, six (12%) in systemic distribution, on the Isle of May, Scotland. Similar fatal L. monocytogenes-associated infections were found in a grey seal pup from Carnoustie, Scotland, and a juvenile harbour seal (Phoca vitulina) in the Netherlands. Whole genome sequencing of 15 of the L. monocytogenes isolates identified 13 multilocus sequence types belonging to the L. monocytogenes lineages I and II, but with scant phenotypic and genotypic antimicrobial resistance and limited variation in virulence factors. The phylogenetic diversity present suggests there are multiple sources of L. monocytogenes, even for seal pups born in the same colony and breeding season. This is the first description of L. monocytogenes isolated from, and detected in lesions in, pinnipeds and indicates that infection can be systemic and fatal. Therefore, listeriosis may be an emerging or overlooked disease in seals with infection originating from contamination of the marine environment.


Asunto(s)
Caniformia , Listeria monocytogenes , Phoca , Phocidae , Animales , Listeria monocytogenes/genética , Filogenia , Genotipo
14.
Microbiol Resour Announc ; 13(1): e0099223, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38047682

RESUMEN

Limnobacter thiooxidans CS-K2T is a Gram-negative bacterium first isolated from the sediment of the littoral zone of a freshwater lake in Germany. We here present the complete annotated genome sequence of this thiosulfate-oxidizing bacterium, spanning 3.54 Mb and encoding 3,192 protein-coding sequences.

15.
Data Brief ; 52: 109873, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38146295

RESUMEN

Morganella morganii WA01/MUTU is a heavy metal tolerant strain capable of producing silver nanoparticles (AgNPs) from AgNO3. Here we present the draft genome sequence of M. morganii WA01/MUTU isolated from a water sample collected in Nakhon Pathom province, Thailand. The draft genome was sequenced on the Illumina NextSeq 550 sequencer. The genome consisted of 34 contigs with a total size of 3,991,804 bp, an N50 value of 364,423 bp and a GC content of 50.93%. The digital DNA-DNA hybridisation (dDDH) between WA01/MUTU and Morganella morganii (NBRC 3848) was 83.9%, identifying the strain as Morganella morganii. The data presented here can be used in comparative genomics to identify gene clusters involved in AgNP biosynthesis and secondary metabolite production. The draft genome sequence data was deposited at NCBI under Bioproject accession number PRJNA493966.

16.
Sci Total Environ ; 913: 169559, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38159768

RESUMEN

A naturally occurring multispecies bacterial community composed of Bacillus cereus and two novel bacteria (Microbacterium forte sp. nov. and Stenotrophomonas goyi sp. nov.) has been identified from a contaminated culture of the microalga Chlamydomonas reinhardtii. When incubated in mannitol- and yeast extract-containing medium, this bacterial community can promote and sustain algal hydrogen production up to 313 mL H2·L-1 for 17 days and 163.5 mL H2·L-1 for 25 days in high-cell (76.7 µg·mL-1 of initial chlorophyll) and low-cell density (10 µg·mL-1 of initial chlorophyll) algal cultures, respectively. In low-cell density algal cultures, hydrogen production was compatible with algal growth (reaching up to 60 µg·mL-1 of chlorophyll). Among the bacterial community, M. forte sp. nov. was the sole responsible for the improvement in hydrogen production. However, algal growth was not observed in the Chlamydomonas-M. forte sp. nov. consortium during hydrogen-producing conditions (hypoxia), suggesting that the presence of B. cereus and S. goyi sp. nov. could be crucial to support the algal growth during hypoxia. Still, under non­hydrogen producing conditions (aerobiosis) the Chlamydomonas-M. forte sp. nov. consortium allowed algal growth (up to 40 µg·mL-1 of chlorophyll) and long-term algal viability (>45 days). The genome sequence and growth tests of M. forte sp. nov. have revealed that this bacterium is auxotroph for biotin and thiamine and unable to use sulfate as sulfur source; it requires S-reduced forms such as cysteine and methionine. Cocultures of Chlamydomonas reinhardtii and M. forte sp. nov. established a mutualistic association: the alga complemented the nutrient deficiencies of the bacterium, while the bacterium released ammonium (0.19 mM·day-1) and acetic acid (0.15 mM·day-1) for the alga. This work offers a promising avenue for photohydrogen production concomitant with algal biomass generation using nutrients not suitable for mixotrophic algal growth.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Microbacterium , Clorofila , Ácido Acético , Bacterias , Hipoxia , Hidrógeno
17.
PeerJ ; 11: e16002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810781

RESUMEN

Background: The Malayan pangolin (Manis javanica) is a placental mammal and is listed as Critically Endangered on the IUCN Red List of Threatened Species. Most previous attempts to breed pangolins in captivity have met with little success because of dietary issues, infections, and other complications, although a previous study reported breeding pangolins in captivity to the third generation. In our previous pangolin genome sequencing data analysis, we obtained a considerable amount of bacterial DNA from a pregnant female Malayan pangolin (named "UM3"), which was likely infected by Paraburkholderia fungorum-an agent of biodegradation and bioremediation in agriculture. Methodology: Here, we further confirmed and characterized this bacterial species using PCR, histological staining, whole-genome sequencing, and bioinformatics approaches. PCR assays with in-house designed primer sets and 16S universal primers showed clear positive bands in the cerebrum, cerebellum, lung, and blood of UM3 suggesting that UM3 might have developed septicaemia. Histological staining showed the presence of Gram-negative rod-shaped bacteria in the pangolin brain and lungs, indicating the colonization of the bacteria in these two organs. In addition, PCR screening of UM3's fetal tissues revealed the presence of P. fungorum in the gastrocnemius muscle, but not in other tissues that we examined. We also sequenced and reconstructed the genome of pangolin P. fungorum, which has a genome size of 7.7 Mbps. Conclusion: Our study is the first to present detailed evidence of the presence of P. fungorum in a pangolin and her fetus (although preliminary results were presented in our previous article). Here, we raise the concern that P. fungorum may potentially infect humans, especially YOPI (young, old, pregnant, and immunocompromised) people. Therefore, caution should be exercised when using this bacterial species as biodegradation or bioremediation agents in agriculture.


Asunto(s)
Mamíferos , Pangolines , Humanos , Embarazo , Animales , Femenino , Pangolines/genética , Mamíferos/genética , Placenta , Euterios/genética , Análisis de Secuencia
18.
Microbiol Spectr ; 11(4): e0217022, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37260413

RESUMEN

Vibrio parahaemolyticus is a marine bacterium coming from estuarine environments, where the migratory birds can easily be colonized by V. parahaemolyticus. Migratory birds may be important reservoirs of V. parahaemolyticus by growth and re-entry into the environment. To further explore the spreading mechanism of V. parahaemolyticus among marine life, human beings, and migratory birds, we aimed to investigate the characteristics of the genetic diversity, antimicrobial resistance, virulence genes, and a potentially informative gene marker of V. parahaemolyticus isolated from migratory birds in China. This study recovered 124 (14.55%) V. parahaemolyticus isolates from 852 fecal and environmental (water) samples. All of the 124 strains were classified into 85 known sequence types (STs), of which ST-2738 was most frequently identified. Analysis of the population structure using whole-genome variation of the 124 isolates illustrated that they grouped into 27 different clonal groups (CGs) belonging to the previously defined geographical populations VppX and VppAsia. Even though these genomes have high diversity, an extra copy of tRNA-Gly was presented in all migratory bird-carried V. parahaemolyticus isolates, which could be used as a potentially informative marker of the V. parahaemolyticus strains derived from birds. Antibiotic sensitivity experiments revealed that 47 (37.10%) isolates were resistant to ampicillin. Five isolates harbored the plasmid-mediated quinolone resistance (PMQR) gene qnrD, which has not previously been identified in this species. The investigation of antibiotic resistance provides the basic knowledge to further evaluate the risk of enrichment and reintroduction of pathogenic V. parahaemolyticus strains in migratory birds. IMPORTANCE The presence of V. parahaemolyticus in migratory birds' fecal samples implies that the human pathogenic V. parahaemolyticus strains may also potentially infect birds and thus pose a risk for zoonotic infection and food safety associated with re-entry into the environment. Our study firstly highlights the extra copy of tRNA as a potentially informative marker for identifying the bird-carried V. parahaemolyticus strains. Also, we firstly identify the plasmid-mediated quinolone resistance (PMQR) gene qnrD in V. parahaemolyticus. To further evaluate the risk of enrichment and reintroduction of pathogenic strains carried by migratory birds, we suggest conducting estuarine environmental surveillance to monitor the antibiotic resistance and virulence factors of bird-carried V. parahaemolyticus isolates.


Asunto(s)
Quinolonas , Vibriosis , Vibrio parahaemolyticus , Humanos , Vibrio parahaemolyticus/genética , Quinolonas/farmacología , Antibacterianos/farmacología , Ampicilina , Plásmidos/genética , Vibriosis/microbiología
19.
Microbiol Spectr ; 11(4): e0164823, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37358458

RESUMEN

Noncanonical secondary structures in nucleic acids have been studied intensively in recent years. Important biological roles of cruciform structures formed by inverted repeats (IRs) have been demonstrated in diverse organisms, including humans. Using Palindrome analyser, we analyzed IRs in all accessible bacterial genome sequences to determine their frequencies, lengths, and localizations. IR sequences were identified in all species, but their frequencies differed significantly across various evolutionary groups. We detected 242,373,717 IRs in all 1,565 bacterial genomes. The highest mean IR frequency was detected in the Tenericutes (61.89 IRs/kbp) and the lowest mean frequency was found in the Alphaproteobacteria (27.08 IRs/kbp). IRs were abundant near genes and around regulatory, tRNA, transfer-messenger RNA (tmRNA), and rRNA regions, pointing to the importance of IRs in such basic cellular processes as genome maintenance, DNA replication, and transcription. Moreover, we found that organisms with high IR frequencies were more likely to be endosymbiotic, antibiotic producing, or pathogenic. On the other hand, those with low IR frequencies were far more likely to be thermophilic. This first comprehensive analysis of IRs in all available bacterial genomes demonstrates their genomic ubiquity, nonrandom distribution, and enrichment in genomic regulatory regions. IMPORTANCE Our manuscript reports for the first time a complete analysis of inverted repeats in all fully sequenced bacterial genomes. Thanks to the availability of unique computational resources, we were able to statistically evaluate the presence and localization of these important regulatory sequences in bacterial genomes. This work revealed a strong abundance of these sequences in regulatory regions and provides researchers with a valuable tool for their manipulation.


Asunto(s)
Replicación del ADN , Genómica , Humanos , Secuencia de Bases , Bacterias/genética , Filogenia
20.
Metab Eng ; 78: 223-234, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37369325

RESUMEN

The emergence of next-generation sequencing (NGS) technologies has made it possible to not only sequence entire genomes, but also identify metabolic engineering targets across the pangenome of a microbial population. This study leverages NGS data as well as existing molecular biology and bioinformatics tools to identify and validate genomic signatures for improving phenazine biosynthesis in Pseudomonas chlororaphis. We sequenced a diverse collection of 34 Pseudomonas isolates using short- and long-read sequencing techniques and assembled whole genomes using the NGS reads. In addition, we assayed three industrially relevant phenotypes (phenazine production, biofilm formation, and growth temperature) for these isolates in two different media conditions. We then provided the whole genomes and phenazine production data to a unitig-based microbial genome-wide association study (mGWAS) tool to identify novel genomic signatures responsible for phenazine production in P. chlororaphis. Post-processing of the mGWAS analysis results yielded 330 significant hits influencing the biosynthesis of one or more phenazine compounds. Based on a quantitative metric (called the phenotype score), we elucidated the most influential hits for phenazine production and experimentally validated them in vivo in the most optimal phenazine producing strain. Two genes significantly increased phenazine-1-carboxamide (PCN) production: a histidine transporter (ProY_1), and a putative carboxypeptidase (PS__04251). A putative MarR-family transcriptional regulator decreased PCN titer when overexpressed in a high PCN producing isolate. Overall, this work seeks to demonstrate the utility of a population genomics approach as an effective strategy in enabling the identification of targets for metabolic engineering of bioproduction hosts.


Asunto(s)
Pseudomonas chlororaphis , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/metabolismo , Metagenómica , Estudio de Asociación del Genoma Completo , Pseudomonas/genética , Pseudomonas/metabolismo , Fenazinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA