Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Intervalo de año de publicación
1.
Environ Pollut ; 360: 124777, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39173866

RESUMEN

The application of manure and earthworms are frequently used in fertilization practices to improve C, N, and P cycling in soil, which may be adversely affected by roxarsone (ROX), as an organoarsenical pollutant. To effectively address this issue, in this work, the interactive impacts of ROX and earthworm Eisenia foetida on the aggregate formation, input of organic carbon (OC), and changes in the available N and P following 56-day cultivation were systematically investigated. Compared to the control, earthworms increased the mean weight diameter (MWD) of the soil aggregates from 0.6 to 1.1 mm. Thereby, they activated soil enzymes including catalase (CAT), sucrase (SC), urease (UE), and neutral phosphatase (NP), with the soil's pH decreased to 7.1. Consequently, the values of OC, soluble nitrite (NO3-N), and Olsen-P content were respectively increased by 0.78-, 1.69-, and 0.87- folds in the E treatment (14.3 vs. 25.5 g/kg, 12.8 vs. 33.3 mg/kg, and 7.8 vs. 14.6 mg/kg). Although the changes in the R treatment were slight, ROX reduced the earthworm-mediated improvements of soil fertility during the application of the RE treatment compared to the E treatment, i.e., the values of MWD, OC, NO3-N, and Olsen-P were reduced to 0.9 mm, 20.4 g/kg, 25.4 mg/kg, and 11.6 mg/kg, respectively. From the well-fitted structural equation models, it was demonstrated that earthworms enhanced the aggregate formation and nutrient cycling of OC, NO3-N, and Olsen-P, which were inhibited by ROX. Overall, these adverse effects can be offset by earthworm addition, which can play the dual role of monitor and driver for the soil properties. Our work provides insightful strategies for ROX-bearing manure management.


Asunto(s)
Estiércol , Oligoquetos , Roxarsona , Contaminantes del Suelo , Suelo , Oligoquetos/metabolismo , Animales , Suelo/química , Contaminantes del Suelo/metabolismo , Fertilizantes/análisis , Fósforo/metabolismo , Nitrógeno/metabolismo
2.
Environ Monit Assess ; 195(12): 1420, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37932575

RESUMEN

The limited availability of phosphorus (P) in the soil, which is affected by soil moisture, has a significant impact on crop production. However, we still do not fully understand how water management and nitrogen (N) addition affect the availability of P in paddy soil. An evaluation of the effects of two water management strategies that is continuous flooding (CF) and alternate wetting and drying (AWD) irrigation along with various nitrogenous fertilizer addition rates (equivalent to 0, 100%, 133%, and 166% recommended dose of N addition) on P availability in paddy soil took place over the course of a 2-year field experiment. The results showed that water management had a significant influence on ferrous iron, microbial biomass P, and soil-available P. However, the addition of N did not affect the availability of P in the soil. When N was added at various rates, AWD consistently reduced the amount of soil-available P compared to CF. This was primarily because AWD increased microbial biomass, which immobilized P and decreased the content of ferrous iron. As a result, the soil's ability to absorb P increased, leading to a decrease in the amount of P available. In conclusion, AWD decreases the amount of available P in paddy soil compared to CF.


Asunto(s)
Oryza , Agua , Fósforo , Nitrógeno , Monitoreo del Ambiente , Suelo , Hierro , Abastecimiento de Agua
3.
J Environ Manage ; 345: 118931, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37688960

RESUMEN

Dairy processing sludge (DPS) is a byproduct generated in wastewater treatment plants located in dairy (milk) processing companies (waste activated sludge). DPS presents challenges in terms of its management (as biosolids) due to its high moisture content, prolonged storage required, uncontrolled nutrient loss and accumulation of certain substances in soil in the proximity of dairy companies. This study investigates the potential of hydrothermal carbonization (HTC) for recovery of nutrients in the form of solid hydrochar (biochar) produced from DPS originating from four different dairy processing companies. The HTC tests were carried out at 160 °C, 180 °C, 200 °C and 220 °C, and a residence time of 1h. The elemental properties of hydrochars (biochars), the content of primary and secondary nutrients, as well as contaminants were examined. The transformation of phosphorus in DPS during HTC was investigated. The fraction of plant available phosphorus was determined. The properties of hydrochar (biochar) were compared against the European Union Fertilizing Products Regulation. The findings of this study demonstrate that the content of nutrient in hydrochars (biochars) meet the requirements for organo-mineral fertilizer with nitrogen and phosphorus as the declared nutrients (13.9-26.7%). Further research on plant growth and field tests are needed to fully assess the agronomic potential of HTC hydrochar (biochar).


Asunto(s)
Leche , Aguas del Alcantarillado , Animales , Nutrientes , Fósforo
4.
Sci Total Environ ; 901: 166364, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37597547

RESUMEN

Adding industrial and agricultural wastes to farmland can increase soil available phosphorus (P) pool and boost crop production, but the process affecting soil P transformation and bioavailability is still poorly understood. We studied the effects of straw (ST), biochar (BC) and Si-modified biochar (Si-BC) amendments on the available-P content and its fraction transformation in rice-paddy soils. Our results showed that these three soil amendments significantly increased the concentrations of both microbial biomass carbon (MBC) and microbial biomass-P (MBP) during the first rice season; by contrast, the effects of ST and BC application were relatively poor on acid-phosphatase (ACP) activity, which was increased by 24 % under ST and 14 % under BC. Soil total P concentrations did not differ significantly, although the concentration and percentage of each P-fraction were altered significantly among treatments. Although all three applications increase soil available-P concentration by promoting the transformation of organic-P (Po) components to inorganic-P (Pi), there are differences in the transformation efficiency of the soil P fraction between these amendments. Redundancy analysis results also showed significant clustering of soil P-fraction transformations after ST and BC treatments. Structural equation model analysis further indicated that all amendments regulated microbial processes by changing soil pH and dissolved organic carbon (DOC), thereby promoting soil P transformation and improving P efficiency. Sodium bicarbonate-extractable Po (NaHCO3-Po) contributed most to soil available-P under the different amendments. Compared to ST and Si-BC, BC application improved more soil microbial status and the transformation of soil unavailable-P into available-P, therefore the application of BC in rice fields is the most beneficial method to promote phosphorus use and production sustainability in rice. These findings helped to understand the effects of using industrial and agricultural waste (e.g. straw, biochar and Si-modified biochar) on soil P-fractions and so provided a reference for sustainable resource use and green production in rice-paddy ecosystems.

5.
Sci Total Environ ; 869: 161622, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36649772

RESUMEN

Coupling phosphate-solubilizing microorganisms (PSM) can improve the availability of phosphorous (P) in biochar-based slow-release P fertilizers (BPF). However, the mechanism in release and transformation of P in BPF regulated by PSM is still unclear. Herein, the biocompatibility and the adhesion behaviors of BPF and PSM (Enterobacter hormaechei Rs-198) in soil were firstly studied, and a 90 days' laboratory-scale soil incubation experiment of BPF and Rs-198 was performed to study the transformation of P of BPF. The results show that BPF has a good biocompatibility for Rs-198 due to its low aromaticity, graphitization and free radicals' content (0.084 mg/g). Rs-198 are adhered to the surface of BPF in soil due to the high negative secondary energy minimum and low total interaction energy between Rs-198 and BPF. Available P in the incubation of BPF and Rs-198 (BR treatment) is significantly higher than that of the incubation of BPF (BF treatment) at initial 60 days. However, the content of available P in BR treatment is much lower compared with that in BF treatment on day 90, which is attributed to the entrapment of released P from BPF by Rs-198 and the formation of polyphosphate (polyP) rather than bound with soil mineral. Overall, this study presents new insights into the transformation of P in BPF regulated by PSM.


Asunto(s)
Fertilizantes , Fósforo , Fósforo/metabolismo , Fertilizantes/análisis , Carbón Orgánico , Suelo , Polifosfatos
6.
J Environ Manage ; 328: 116998, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516705

RESUMEN

Soil Phosphorous (P) availability is a limiting factor for plant growth and regulates biological metabolism in plantation ecosystems. The effect of variations in soil microbial P cycling potential on the availability of soil P during succession in plantation ecosystems is unclear. In this study, a metagenomics approach was used to explore variations in the composition and diversity of microbial P genes along a 45-year recovery sequence of Robinia pseudoacacia on the Loess Plateau, as well soil properties were measured. Our results showed that the diversity of P cycling genes (inorganic P solubilization and organic P mineralization genes) increased significantly after afforestation, and the community composition showed clear differences. The gcd and ppx genes were dominant in inorganic P transformation, whereas phnM gene dominated the transformation of organic P. The abundance of genes involved in inorganic P solubilization and organic P mineralization was significantly positively correlated with P availability, particularly for phnM, gcd, ppx, and phnI genes, corresponding to the phyla Gemmatimonadetes, Acidobacteria, Bacteroidetes, and Planctomycetes. The critical drivers of the microbial main genes of soil P cycling were available P (AP) and total N (TN) in soil. Overall, these findings highlight afforestation-induced increases in microbial P cycling genes enhanced soil P availability. and help to better understand how microbial growth metabolism caused by vegetation restoration in ecologically fragile areas affects the soil P cycling.


Asunto(s)
Ecosistema , Robinia , Suelo , Microbiología del Suelo , Bacterias/genética , China
7.
Environ Geochem Health ; 44(3): 749-769, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34050847

RESUMEN

Eutrophication level in lakes and reservoirs depends on both internal and external phosphorus (P) load. Characterization of sediment P fractionation and identifying the P pollution sources are important for assessing the bio-availability of P and the dominant P source, for effectively controlling the water pollution. For determining the availability and sources of sediment P and eutrophication status, spatio-temporal variation in different P fractionation of sediment of hyper-eutrophic Krishnagiri reservoir, Tamil Nadu, India, was investigated. Sediment average total P (TP) content ranged from 4.62 to 5.64 g/kg. Main phosphorus form was the inorganic P (IP), and it makes up to 73.4-87.7% of TP. Among the different P fraction, viz. calcium bound (Ca-P), iron bound (Fe-P), aluminium bound (Al-P), exchangeable (Ex-P) and Organic-P (Org-P), Ca-P was the dominating fraction in both IP and TP. Trend of IP fraction was as follows: Ca-P > Fe-P > Al-P > Ex-P in pre-monsoon season, Fe-P > Ca-P > Al-P > Ex-P in monsoon and Ca-P > Al-P > Fe-P > Ex-P in post-monsoon. Overall the trend was as follows Ca-P > Fe-P > Al-P > Org-P > Ex-P. Bio-available-P (BAP) fractions ranged from 35.2 to 64.0% of TP, indicating its comparative higher value. Pearson's correlation matrix revealed that there was strong correlation among the different P fractions. Factor analysis indicates that different fractions of P were the dominating factor than the other sediment parameters. The observed variation in sediment P fractionation indicate the differences in source and characterization of P which is very helpful for implementation of effective management practices in controlling pollution that arises due to phosphorus in this hyper-eutrophic reservoir.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos/análisis , India , Lagos , Fósforo/análisis , Contaminantes Químicos del Agua/análisis
8.
Microorganisms ; 9(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34442740

RESUMEN

The bacterial genus Pantoea has been widely evaluated as promising bacteria to increase phosphorus (P) availability in soil. The aim of this study was to characterize the phosphate solubilizing (PS) activity of a Pantoea agglomerans strain and to evaluate the impact of its application in a semi-arid soil on phosphate availability and structure of the bacterial communities as a whole. An incubation experiment under close-to-natural soil environmental conditions was conducted for 15 days at 30 °C. High-throughput sequencing of the bacterial 16S rRNA gene was used to characterize and to compare the bacterial community structure of P. agglomerans-inoculated soil with non-inoculated control. Furthermore, a qPCR-based method was developed for detection and quantification of the functional genes related to the expression of mineral phosphate solubilization (MPS) phenotype in P. agglomerans. The results showed that in vitro solubilization of Ca3(PO4)2 by P. agglomerans strain was very efficient (980 mg/L), and it was associated with a drop in pH due to the secretion of gluconic acid; these changes were concomitant with the detection of gdh and pqqC genes. Moreover, P. agglomerans inoculum application significantly increased the content of available P in semi-arid soil by 69%. Metagenomic analyses showed that P. agglomerans treatment modified the overall edaphic bacterial community, significantly impacting its structure and composition. In particular, during P. agglomerans inoculation the relative abundance of bacteria belonging to Firmicutes (mainly Bacilli class) significantly increased, whereas the abundance of Actinobacteria together with Acidobacteria and Chloroflexi phyla decreased. Furthermore, genera known for their phosphate solubilizing activity, such as Aneurinibacillus, Lysinibacillus, Enterococcus, and Pontibacter, were exclusively detected in P. agglomerans-treated soil. Pearson's correlation analysis revealed that changes in soil bacterial community composition were closely affected by soil characteristics, such as pH and available P. This study explores the effect of the inoculation of P. agglomerans on the bacterial community structure of a semi-arid soil. The effectiveness in improving the phosphate availability and modification in soil bacterial community suggested that P. agglomerans represent a promising environmental-friendly biofertilizer in arid and semi-arid ecosystems.

9.
Ecotoxicol Environ Saf ; 215: 112170, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773154

RESUMEN

Nanoscale zero-valent iron (nZVI) shows an excellent degradation effect on chlorinated contaminants in soil, but poses a threat to plants in combination with phytoremediation. Arbuscular mycorrhizal (AM) fungus can reduce the phyototoxicity of nZVI, but their combined impacts on polychlorinated biphenyls (PCBs) degradation and plant growth remain unclear. Here, a greenhouse pot experiment was conducted to investigate the influences of nZVI and/or Funneliformis caledonium on soil PCB degradation and ryegrass (Lolium perenne L.) antioxidative responses. The amendment of nZVI significantly reduced not only the total and homolog concentrations of PCBs in the soil, but also the ryegrass biomass as well as soil available P and root P concentrations. Moreover, nZVI significantly decreased leaf superoxide disutase (SOD) activity, while tended to decrease the protein content. In contrast, the additional inoculation of F. caledonium significantly increased leaf SOD activity and protein content, while tended to increase the catalase activity and tended to decrease the malondialdehyde content. The additional inoculation of F. caledonium also significantly increased soil alkaline phosphatase activity, and tended to increase root P concentration, but had no significantly effects on soil available P concentration, the biomass and P acquisition of ryegrass, which could be attributed to the fixation of soil available nutrients by nZVI. Additionally, F. caledonium facilitated PCB degradation in the nZVI-applied soil. Thus, AM fungus can alleviate the nZVI-induced phytotoxicity, showing great application potentials in accompany with nZVI for soil remediation.


Asunto(s)
Lolium/fisiología , Bifenilos Policlorados/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Biomasa , Hongos , Glomeromycota/fisiología , Hierro/metabolismo , Lolium/metabolismo , Lolium/microbiología , Micorrizas/fisiología , Bifenilos Policlorados/análisis , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
10.
Sci Total Environ ; 754: 142138, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920401

RESUMEN

Sediment matrices, as integral organo-mineral parts of aquatic bodies, can effectively bind and accumulate nutrients and potentially hazardous substances from diffuse and/or point sources of contamination. In this study, we analysed the longitudinal distribution of macronutrients (total N and available P and K) and the mechanical composition of the sediments of Jegricka watercourse (a part of the multi-functional Danube-Tisa-Danube canal network) known for its exposure to anthropogenic loads. The results showed that the nutrient pollution index was mostly above 1.0 (in 76%, 86% and 93% of the analysed samples for K, N and P, respectively), and the mean values for N, P and K were 2.69, 1.92 and 1.24, respectively. The average content of all nutrients and the sand fraction were significantly higher, whereas the clay fraction was considerably lower, in the sediment samples than in the adjacent arable Chernozem soil used as a benchmark. The differences in the nutrient contents and mechanical properties in the sediments were measured longitudinally (at upstream vs. downstream stations) and assessed using correlation, cluster analysis, and principal component analysis. The results suggest that the nutrient sources in the sediments as well as their transport and loading mechanisms along Jegricka watercourse are diverse and complex, likely driven by a combination of untreated industrial/urban wastewater discharges, erosion and surface runoff from the surrounding agricultural land. As a majority of the analysed watercourse banks belong to areas of special ecological value, the obtained results may be useful: i) indicators for designing and implementation of sustainable land/water policies and measures for the protection and rehabilitation of these valuable ecosystems, ii) inputs for testing/calibrating the sediment transport models and iii) the basis for sediment management.

11.
Chemosphere ; 244: 125471, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31809932

RESUMEN

Biochar is a potential material for making slow-releasing phosphorus (P) fertilizers for the sake of increasing soil P use efficiency and mitigating P losses. However, the long-term effects of P-laden biochars on soil P availability remains unconcerned. In this study, a laboratory-scale 70-days soil incubation experiment was conducted to study the effects of original and P-laden biochars on soil P availability and fractions. Two original biochars were derived from maize stalks by pyrolyzing at 350 °C and 600 °C. P was laden on those biochars by immersing biochars in saturated KH2PO4 solution for 24 h. Eight treatments were set for the incubation experiment, which were soil, soil + triple-superphosphate (TSP), soil + 350 °C biochar, soil + 600 °C biochar, soil + TSP + 350 °C biochar, soil + TSP + 600 °C biochar, soil + 350 °C P-laden biochar, and soil + 600 °C P-laden biochar. Results showed that original biochars could decrease soil available P through P adsorption. And there were no significant differences of soil P fractions under the treatments of mineral P fertilizer and P-laden biochars. Whereas, compared to mineral P fertilizer, P-laden biochars, especially 600 °C P-laden biochar, could maintain soil available P in a significantly higher level across the incubation. It was mainly because of the slow-releasing pattern of P laden on biochar and a more homogeneous soil P source distribution under P-laden biochar treatments. These results indicated that P-laden biochar could work as P fertilizer to improve soil P use efficiency.


Asunto(s)
Carbón Orgánico , Fertilizantes/análisis , Fósforo , Adsorción , Agricultura , Monitoreo del Ambiente , Minerales , Suelo , Zea mays
12.
Environ Technol ; 41(26): 3483-3492, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31032733

RESUMEN

Wheat straw amendment to sandy soil can remove nitrogen (N) and phosphorus (P) from wastewater but it is unclear whether prior decomposition affects removal. Sand mixed with finely ground wheat straw at 12.5 g straw kg-1 was placed in leaching columns. Wastewater was added either immediately after mixing with straw (fresh straw) or after the sand-straw mix had been incubated moist for 7 or 14 days (7D or 14D straw). Sand alone was considered as control. Leaching was carried out 4, 8 or 16 days after addition of wastewater and inorganic N and P were analysed after leaching in both leachate and sand. In the amended treatments, nitrate and available P in the sand-straw mix were not detectable throughout the experiment. On day 16, inorganic N in the sand-straw mix was highest in fresh straw where it was three-fold higher than in 14D straw and 30% higher than in sand alone and 7D straw on day 16. Straw decomposition stage had no consistent effect on microbial biomass N and P. Released CO2 was lower in 14D straw than in fresh straw and 7D straw. With straw amendment, > 95% of inorganic N added with wastewater was removed compared to 40-50% with sand alone. Inorganic P leaching was reduced by about 30% compared to sand alone on day 16. In conclusion, wheat straw addition reduced leaching of N compared to sand alone, but the decomposition stage of the straw had little effect on the removal of N and P from wastewater.


Asunto(s)
Triticum , Aguas Residuales , Nitrógeno/análisis , Arena , Suelo
13.
Sci Total Environ ; 704: 135318, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31780162

RESUMEN

The level of eutrophication in reservoirs is dependent on their internal and external P loads. Identifying the P pollution characteristics and its fractional composition in sediments is therefore necessary to determine the potential bioavailability and dominant sources of P for effective water pollution control. In this study, we investigated the P pollution characteristics in the overlying water and sediment in a chain of reservoirs (the Panjiakou (PJK), Daheiting (DHT) and Yuqiao (YQ) Reservoirs) in North China. Our results showed that the P concentrations in the overlying water of the YQ Reservoir was higher than that of the PJK and DHT Reservoirs, but the sediment P loading and P bio-availability were lower than the PJK and DHT Reservoirs. However, the sediment P release risk in the YQ Reservoir was higher than the DHT and PJK Reservoirs. The YQ Reservoir was mainly polluted by internal sediment P release and external sources predominantly derived from the inflowing polluted Sha River Basin. Various forms of P in the DHT Reservoir decreased with depth, and the P in the overlying water column was mainly sourced from internal P release due to sediment accumulation of excess P from human activities. In recent years, the proportion of bio-available P (BAP) in the PJK and YQ Reservoirs had increased, and the proportion of the more inert Al-P and Ca-P in the PJK Reservoir decreased. Ca-P in the YQ Reservoir had also decreased, indicating that inert P has been gradually transformed into active P in the PJK and YQ Reservoirs in recent years. The observed differences in P loading and sedimentary P fractions indicate different pollution characteristics and sources between the three reservoirs. We therefore recommend site-specific remediation strategies for effective control on P pollution in the three eutrophic reservoirs.


Asunto(s)
Monitoreo del Ambiente , Fósforo/análisis , China , Eutrofización , Sedimentos Geológicos , Nitrógeno , Contaminantes Químicos del Agua
14.
Microorganisms ; 7(12)2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817176

RESUMEN

Arbuscular mycorrhizal (AM) fungi can ameliorate not only plant phosphorus (P) nutrition but also soil P mobilization, while P mobilization occurs secondarily and may in turn limit P acquisition at certain crop growth stages. It can be termed as the "mycorrhiza-inducible P limitation", which has so far largely escaped study. A pot experiment was conducted to test the dynamic P acquisition of maize (Zea mays L.) at the vegetative growth stage and P mobilization in the soil in response to AM fungal inoculation in an unsterilized arable alkaline soil. The experiment included two fertilization levels and two AM inoculation levels, i.e., nitrogen (N), P, and potassium (K) fertilization (NPK) and non-fertilization (control), as well as Funneliformis mosseae inoculation (+M) and non-inoculation (-M). Regardless of fertilization, +M increased mycorrhizal colonization and plant biomass at weeks 4 and 8 but increased tissue P concentration only at week 4 compared with those of -M. In addition, the plant P acquisition and shoot biomass in the control+M treatment at weeks 4 and 8 were close to and much lower than those of NPK-M, respectively. Furthermore, the increase in soil P mobilization potential, which was achieved by the accelerated soil alkaline phosphatase activity and the decreased soil pH, was lower than the increase in root P-acquiring efficiency, which was achieved by the enhanced mycorrhization and ZEAma;Pht1;6 (a mycorrhiza- inducible Pi transporter in maize root) expression. Regardless of fertilization, +M thus significantly decreased soil available P concentrations compared with those in the -M treatments. Therefore, there was a large, real gap between soil P mobilization and root P acquisition in response to enhanced root mycorrhizal colonization, substantially limiting plant P acquisition and growth.

15.
Front Plant Sci ; 10: 368, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972095

RESUMEN

Waterlogging presents one of the greatest constraints for agricultural crops. In order to elucidate the influences of waterlogging stress on the growth of oilseed rape, a pot experiment was performed investigating the impact of waterlogging on nitrogen (N) and phosphorus (P) accumulation in oilseed rape, and mineral N and available P profiles and enzyme activities of soils. The experiment included waterlogging treatments lasting 3 (I), 6 (II), and 9 (III) days, and a control treatment without waterlogging (CK). Results showed that waterlogging lasting 3 or more days significantly depressed the growth of oilseed rape, and prolonged the recovery time of plant growth with the period of flooding. Waterlogging notably influenced the N and P concentrations in plant tissues, and also affected mineral N, available P profiles, and activities of enzymes (including urease, phosphatase, invertase, and catalase) in the soils. With the exception of catalase, flooding suppressed the activity of urease, phosphatase, and invertase to varying degrees, and the longer the flooding time, the greater the suppression. The effect of waterlogging on mineral N and P profiles resulted from the altered proportions of NH4 +-N and NO3 --N, and the decreased available P concentrations in these soils, respectively. The effect on P was more significant than on N in both soil nutrient profile and plant utilization.

16.
Environ Sci Pollut Res Int ; 26(11): 11212-11223, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30796661

RESUMEN

Wheat straw amendment to sandy soil has the potential to remove nutrients from wastewater. This study investigated the ability of wheat straw to remove inorganic nitrogen (N) and phosphorus (P) from wastewater when mixed into sand at different rates. Wastewater from a sewage treatment plant was added to sand alone and amended with different wheat straw rates 2.5, 5, 7.5, 10, and 12.5 g wheat straw kg-1 so that the sand was covered with about 15 cm of wastewater. Leaching was carried out after 4, 8, and 16 days and inorganic N and P were analysed after leaching in both the leachate and sand, as well as N2O and CO2 release. In the amended sand, nitrate was about fourfold lower throughout the experiment compared to sand alone. Ammonium was twofold higher than sand alone at 12.5 g straw kg-1 throughout the experiment and on day 16 also at ≥ 5 g straw kg-1. Leachate inorganic N concentration was up to 70-fold higher in sand alone than in amended soils irrespective of straw rate. On day 16, P leaching was about threefold lower and P retention was 40% higher in all amended treatments than sand alone. The redox potential in sand alone was higher than with straw amendments. With straw amendment, the release of CO2 per day was six times higher than with sand alone and increased with straw rates, but very little N2O and CH4 was released throughout the experiment. It can be concluded that amendment of sand with wheat straw can remove large proportions of inorganic N and P from wastewater, even at low straw rates. Likely mechanisms for retention are dissimilatory nitrate reduction and subsequent binding of ammonium to straw for N, and binding to the straw and microbial uptake for P.


Asunto(s)
Nitrógeno/química , Fósforo/química , Suelo/química , Triticum/química , Aguas Residuales/química , Contaminantes del Agua/química , Purificación del Agua/métodos , Adsorción , Nitratos/química , Tallos de la Planta/química , Residuos/análisis , Purificación del Agua/instrumentación
17.
Front Plant Sci ; 8: 1523, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28928758

RESUMEN

Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid) environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max) -wheat (Triticum aestivum) crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, ß-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings clearly indicate that owing to higher biological activity, organic systems possess equal capabilities of supplying P for crop growth as are conventional systems with inputs of mineral P fertilizers.

18.
Ciênc. agrotec., (Impr.) ; 41(2): 209-219, Mar.-Apr. 2017. tab
Artículo en Inglés | LILACS | ID: biblio-890611

RESUMEN

ABSTRACT In the fertility management of highly weathered-leached Brazilian Oxisols, P is the most limiting macronutrient. A greenhouse experiment was conducted with the objective to evaluate the influence of the interaction between P doses, mycorrhizal inoculation and historical land use on Urochloa decumbens growth and P uptake in four Oxisols with contrasting chemical, physical and mineralogical properties. The plants were cultivated in plastic pots containing 4 kg of soil in a completely randomized design, four replications and 2x2x2 factorial scheme: with two P doses; with and without mycorrhizal inoculation; soils cultivated for long periods and non-cultivated (under native vegetation). There were two plantings of ten weeks each. Shoot dry mater, concentration and accumulation of P in the shoot were evaluated. In the first planting, the Urochloa response was greater in non-cultivated soils associated with inoculation and P addition. However, in the second planting, the inoculation had a greater effect in all soils compared to the first planting associated with the lowest P dose. As the P concentration in the soil increased, P in the shoot dry matter increases. The inoculation did not affect the P concentration and accumulation in the shoot of Urochloa. The growth of Urochloa decumbens was strongly influenced by the interaction among soil class x history of land use x dose of P x inoculation.


RESUMO No manejo da fertilidade de Latossolos brasileiros altamente intemperizados e lixiviados, o P é o macronutriente mais limitante. Assim, conduziu-se um experimento em casa de vegetação, objetivando-se avaliar a influência da interação entre doses de P, inoculação micorrízica e histórico de uso do solo no crescimento de Urochloa decumbens e absorção de P, em quatro Latossolos com atributos químicos, físicos e mineralógicos contrastantes. As plantas foram cultivadas em vasos contendo 4 kg de solo, dispostos em um delineamento inteiramente casualizado, com quatro repetições e esquema fatorial 2x2x2: duas doses de P; com e sem inoculação micorrízica; solos cultivados por longos períodos e não cultivados (sob vegetação nativa). Realizaram-se dois cultivos com duração de 10 semanas cada. Após cada cultivo avaliaram-se a matéria seca da parte aérea, teor e acúmulo de P na parte aérea. No primeiro cultivo, maior resposta ao P aconteceu nos solos sob vegetação nativa em associação à inoculação e adição de P. No segundo cultivo, a inoculação teve maior efeito em todos os solos, associada à menor dose de P. O aumento do P no solo aumenta a concentração desse nutriente na parte aérea. A inoculação não teve efeito na concentração e no acúmulo de P na parte aérea de Urochloa. O crescimento de Urochloa decumbens foi fortemente influenciado pela interação entre classe de solo x histórico de uso da terra x dose de P x inoculação.

19.
Ying Yong Sheng Tai Xue Bao ; 28(11): 3740-3750, 2017 Nov.
Artículo en Chino | MEDLINE | ID: mdl-29692118

RESUMEN

This study examined how soil bacterial and fungal communities responded to the cultivation history of Moso bamboo in Anji and Changxing counties, Huzhou, Zhejiang, China. Soil samples (0-20 and 20-40 cm) were taken from bamboo plantations subjected to different cultivation histories and analyzed the community structures of soil bacterial and fungal by PCR-DGGE methods. It was found that soil bacterial and fungal communities varied greatly with the development of bamboo plantations which converted from Masson pine forest or formed via invading adjacent broadleaf shrub forest. Soil bacterial community structures exhibited a greater response to bamboo cultivation time than fungal community, but bacteria structure of surface soil displayed an ability of resiliency to disturbance and the tendency to recover to the original state. The cultivation time, sampling site and soil layer significantly affected the biodiversity of soil bacteria and fungi, especially the latter two factors. Redundancy analysis (RDA) of soil properties and bacteria or fungi communities showed that there were no accordant factors to drive the alteration of microbial structure, and the first two axes explained less than 65.0% of variance for most of the sampling sites and soil layers, indicating there existed soil parameters besides the five examined that contributed to microbial community alteration.


Asunto(s)
Poaceae , Microbiología del Suelo , Bacterias , Biodiversidad , China , Hongos , Suelo
20.
Front Nutr ; 3: 19, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379240

RESUMEN

Urban sewage sludge is a potential source of phosphorus (P) for agriculture and represents an alternative way to recycle P as fertilizer. However, the use of thermally conditioned sewage sludge (TCSS) required an accurate assessment of its value as P-fertilizer. This work aimed at assessing the plant-availability of P from TCSS. Uptake of P by a mixture of ryegrass and fescue from TCSS and triple super phosphate (TSP) fertilizers was studied using (32)P-labeling technique in a greenhouse experiment. Phosphorus was applied at the rate of 50 mg P kg(-1).We also conducted incubation experiments considering the same treatments to assess soil microbial respiration. Applications of TCSS and TSP increased plant P uptake that is related to the root P acquisition. The P taken up by plant from soil plant-available P was lower for control compared to TSP or TCSS that was attributed to the increase of root interception of soil P. The contribution of TSP to ryegrass nutrition (Pdff%) was 55% with 22% of the applied P which was taken up by plants (CPU%). The Pdff value for TCSS was 56% with 14% of fertilizer P recovery (CPU%). Shoot biomass and total P uptake from TCSS were lower than those from TSP. As a result, the agronomic effectiveness of TCSS calculated from Pdff value (in comparison with TSP treatment) was 102%, while the AE of TCSS estimated from CPU value (in % TSP) was 64%, which is attributed to microbial activity stimulation inducing P immobilization onto soil constituents and microbial biomass during plant growth. The high C/N ratio of TCSS stimulated soil microbial biomass that competes with plant roots to acquire nutrients, such as P. As a consequence, the P taken up from either native soil or TCSS decreased in similar proportions. The AE value calculated with Pdff% took into account these interactions between soil, plant, and microbial biomass, and is less dependent on operational conditions than the AE value calculated with %Precovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA