Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Acta Neurol Belg ; 124(1): 161-168, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37597161

RESUMEN

INTRODUCTION: Parkinson's disease patients' gait is characterized by shorter step length, reduced gait velocity and deterioration of temporal organization of stride duration variability (modified Long Range Autocorrelations). The objective of this study was to compare effects of rhythmic auditory stimulations (RAS) and Rhythmic Vibrotactile Stimulations (RVS) on Parkinson's disease patients' gait. METHODS: Ten Parkinson's disease patients performed three walking conditions lasting 5-7 min each: control condition (CC), RAS condition and RVS condition. Inertial measurement units were used to assess spatiotemporal gait parameters. Stride duration variability was assessed in terms of magnitude using coefficient of variation and in terms of temporal organization (i.e., Long Range Autocorrelations computation) using the evenly spaced averaged Detrended Fluctuation Analysis (α-DFA exponent). RESULTS: Gait velocity was significantly higher during RAS condition than during CC (Cohen's d = 0.52) and similar to RVS condition (Cohen's d = 0.17). Cadence was significantly higher during RAS (Cohen's d = 0.77) and RVS (Cohens' d = 0.56) conditions than during CC. Concerning variability, no difference was found either for mean coefficient of variation or mean α-DFA between conditions. However, a great variability of individual results between the RAS and the RVS conditions is to be noted concerning α-DFA. CONCLUSIONS: RAS and RVS improved similarly PD patients' spatiotemporal gait parameters, without modifying stride duration variability in terms of magnitude and temporal organization at group level. Future studies should evaluate the relevant parameters for administering the right cueing type for the right patient. TRIAL REGISTRATION: ClinicalTrial.gov registration number NCT05790759, date of registration: 16/03/2023, retrospectively registered.


Asunto(s)
Enfermedad de Parkinson , Humanos , Estimulación Acústica/métodos , Marcha , Enfermedad de Parkinson/complicaciones , Proyectos Piloto , Caminata
2.
J Neuroeng Rehabil ; 20(1): 156, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974229

RESUMEN

BACKGROUND: In the recent past, wearable devices have been used for gait rehabilitation in patients with Parkinson's disease. The objective of this paper is to analyze the outcome of a wearable hip orthosis whose assistance adapts in real time to the patient's gait kinematics via adaptive oscillators. In particular, this study focuses on a metric characterizing natural gait variability, i.e., the level of long-range autocorrelations (LRA) in series of stride durations. METHODS: Eight patients with Parkinson's disease (Hoehn and Yahr stages 1[Formula: see text]2.5) performed overground gait training three times per week for four consecutive weeks, assisted by a wearable hip orthosis. Gait was assessed based on performance metrics such as the hip range of motion, speed, stride length and duration, and the level of LRA in inter-stride time series assessed using the Adaptive Fractal Analysis. These metrics were measured before, directly after, and 1 month after training. RESULTS: After training, patients increased their hip range of motion, their gait speed and stride length, and decreased their stride duration. These improvements were maintained 1 month after training. Regarding long-range autocorrelations, the population's behavior was standardized towards a metric closer to the one of healthy individuals after training, but with no retention after 1 month. CONCLUSION: This study showed that an overground gait training with adaptive robotic assistance has the potential to improve key gait metrics that are typically affected by Parkinson's disease and that lead to higher prevalence of fall. TRIAL REGISTRATION: ClinicalTrials.gov Identifer NCT04314973. Registered on 11 April 2020.


Asunto(s)
Dispositivo Exoesqueleto , Enfermedad de Parkinson , Robótica , Humanos , Enfermedad de Parkinson/rehabilitación , Marcha , Terapia por Ejercicio , Caminata
3.
J Neurophysiol ; 130(2): 417-426, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37465888

RESUMEN

Many studies have demonstrated in the past that the level of long-range autocorrelations in series of stride durations, characterizing natural gait variability, is impacted by external constraints, such as treadmill or metronome, or by pathologies, such as Parkinson's or Huntington's disease. Nevertheless, no one has analyzed the effects on this metric of a gait constrained by a robot-mediated walking assistance, which intrinsically tends to normalize the gait pattern. This paper focuses on the influence of a wearable active pelvis orthosis on the level of long-range autocorrelations in series of stride durations. Ten healthy participants, aged between 55 and 77 yr, performed four overground walking sessions, wearing this orthosis, and with different assistive parameters. This study showed that the adaptive assistance provided by this device has the potential of improving gait metrics that are typically affected by aging, such as the hip range of motion, walking speed, stride length, and stride duration, without impacting natural gait variability, i.e., the level of long-range autocorrelations in series of stride durations. This combination is virtuous toward the design of an assistive device for people with locomotion disorders resulting in deteriorated levels of long-range autocorrelations, such as patients with Parkinson's disease.NEW & NOTEWORTHY This study is the first that investigates the effects of a wearable active pelvis orthosis using an oscillator-based adaptive assistance on the level of long-range autocorrelations in series of stride durations during overground walking. It is also the first to compare the effects of different assistance settings on spatiotemporal gait metrics.


Asunto(s)
Enfermedad de Parkinson , Caminata , Humanos , Persona de Mediana Edad , Anciano , Marcha , Locomoción , Enfermedad de Parkinson/terapia , Envejecimiento
4.
J Appl Stat ; 48(3): 471-497, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35706534

RESUMEN

When prediction intervals are constructed using unobserved component models (UCM), problems can arise due to the possible existence of components that may or may not be conditionally heteroscedastic. Accurate coverage depends on correctly identifying the source of the heteroscedasticity. Different proposals for testing heteroscedasticity have been applied to UCM; however, in most cases, these procedures are unable to identify the heteroscedastic component correctly. The main issue is that test statistics are affected by the presence of serial correlation, causing the distribution of the statistic under conditional homoscedasticity to remain unknown. We propose a nonparametric statistic for testing heteroscedasticity based on the well-known Wilcoxon's rank statistic. We study the asymptotic validation of the statistic and examine bootstrap procedures for approximating its finite sample distribution. Simulation results show an improvement in the size of the homoscedasticity tests and a power that is clearly comparable with the best alternative in the literature. We also apply the test on real inflation data. Looking for the presence of a conditionally heteroscedastic effect on the error terms, we arrive at conclusions that almost all cases are different than those given by the alternative test statistics presented in the literature.

5.
Front Physiol ; 11: 572063, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071825

RESUMEN

Effects of treadmill walking on Parkinson's disease (PD) patients' spatiotemporal gait parameters and stride duration variability, in terms of magnitude [coefficient of variation (CV)] and temporal organization [long range autocorrelations (LRA)], are known. Conversely, effects on PD gait of adding an optic flow during treadmill walking using a virtual reality headset, to get closer to an ecological walk, is unknown. This pilot study aimed to compare PD gait during three conditions: Overground Walking (OW), Treadmill Walking (TW), and immersive Virtual Reality on Treadmill Walking (iVRTW). Ten PD patients completed the three conditions at a comfortable speed. iVRTW consisted in walking at the same speed as TW while wearing a virtual reality headset reproducing an optic flow. Gait parameters assessed were: speed, step length, cadence, magnitude (CV) and temporal organization (evenly spaced averaged Detrended Fluctuation Analysis, α exponent) of stride duration variability. Motion sickness was assessed after TW and iVRTW using the Simulator Sickness Questionnaire (SSQ). Step length was greater (p = 0.008) and cadence lower (p = 0.009) during iVRTW compared to TW while CV was similar (p = 0.177). α exponent was similar during OW (0.77 ± 0.07) and iVRTW (0.76 ± 0.09) (p = 0.553). During TW, α exponent (0.85 ± 0.07) was higher than during OW (p = 0.039) and iVRTW (p = 0.016). SSQ was similar between TW and iVRTW (p = 0.809). iVRTW is tolerable, could optimize TW effects on spatiotemporal parameters while not increasing CV in PD. Furthermore, iVRTW could help to capture the natural LRA of PD gait in laboratory settings and could potentially be a challenging second step in PD gait rehabilitation.

6.
Huan Jing Ke Xue ; 41(5): 2496-2504, 2020 May 08.
Artículo en Chino | MEDLINE | ID: mdl-32608869

RESUMEN

Wetlands play an important role in maintaining ecosystem functions. Wetlands in China have suffered intensive human disturbance, especially before 2000, resulting in great losses and degradation. Therefore, two national wetland resource surveys were carried out by the Chinese government during 1998-2003 and 2008-2013 to determine the status of wetlands, understand their dynamics, and provide substantial data that can aid scientific wetland conservation. Based on the survey data, the spatial pattern and spatial autocorrelation were explored using the standard deviation ellipse as well as global and local spatial autocorrelation statistics. GIS mapping was employed to display the results via the visualization of the spatial patterns and relationships. Results indicate that:① Changes in the wetlands of China are significant and exhibit obvious regional differences. The center of the ellipse of the total wetlands has moved to the west, and the degree of spatial differentiation between natural wetlands and artificial wetlands is increasing. There is no significant spatial autocorrelation for changes in artificial wetlands. ② The changes in natural wetlands are significantly spatially autocorrelated and clustered, which are identified by global Moran's I and local Moran's I. The hotspots of natural wetland change are concentrated primarily in Qinghai, Tibet, and Sichuan. The individual hotspot is in Inner Mongolia and the cold spot is in Henan. The difference in spatial autocorrelation between natural and artificial wetland changes indicates that natural wetland changes have shown spatial continuity, while artificial wetland changes have shown strong spatial randomness. ③ Some useful spatial associations are used to delineate wetland conservation effects. Then, three major or five minor effective protection management regions are identified. Wetland conservation efforts should be continuously strengthened and improved, especially in the middle-lower Yangtze River region of central China. The use of Moran statistics helps to reveal spatial autocorrelation and identify the conservation effects in wetland changes, which can provide a basis for decision-making in regional wetland conservation and management systems.


Asunto(s)
Ecosistema , Humedales , China , Conservación de los Recursos Naturales , Humanos , Tibet
7.
Front Physiol ; 11: 601721, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424625

RESUMEN

Parkinson's Disease patients suffer from gait impairments such as reduced gait speed, shortened step length, and deterioration of the temporal organization of stride duration variability (i.e., breakdown in Long-Range Autocorrelations). The aim of this study was to compare the effects on Parkinson's Disease patients' gait of three Rhythmic Auditory Stimulations (RAS), each structured with a different rhythm variability (isochronous, random, and autocorrelated). Nine Parkinson's Disease patients performed four walking conditions of 10-15 min each: Control Condition (CC), Isochronous RAS (IRAS), Random RAS (RRAS), and Autocorrelated RAS (ARAS). Accelerometers were used to assess gait speed, cadence, step length, temporal organization (i.e., Long-Range Autocorrelations computation), and magnitude (i.e., coefficient of variation) of stride duration variability on 512 gait cycles. Long-Range Autocorrelations were assessed using the evenly spaced averaged Detrended Fluctuation Analysis (α-DFA exponent). Spatiotemporal gait parameters and coefficient of variation were not modified by the RAS. Long-Range Autocorrelations were present in all patients during CC and ARAS although all RAS conditions altered them. The α-DFA exponents were significantly lower during IRAS and RRAS than during CC, exhibiting anti-correlations during IRAS in seven patients. α-DFA during ARAS was the closest to the α-DFA during CC and within normative data of healthy subjects. In conclusion, Isochronous RAS modify patients' Long-Range Autocorrelations and the use of Autocorrelated RAS allows to maintain an acceptable level of Long-Range Autocorrelations for Parkinson's Disease patients' gait.

8.
Front Psychol ; 11: 574396, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33569019

RESUMEN

Human beings adapt the spontaneous pace of their actions to interact with the environment. Yet, the nature of the mechanism enabling such adaptive behavior remains poorly understood. The aim of the present contribution was to examine the role of attention in motor timing using (a) time series analysis, and (b) a dual task paradigm. In a series of two studies, a finger-tapping task was used in sensorimotor synchronization with various tempi (from 300 to 1,100 ms) and motor complexity (one target vs. six targets). Time series analyzes indicated that two different timing strategies were used depending on the speed constraints. At slow tempi, tapping sequences were characterized by strong negative autocorrelations, suggesting the implication of cognitive predictive timing. When moving at fast and close-to-spontaneous tempi, tapping sequences were characterized by less negative autocorrelations, suggesting that timing properties emerged from body movement dynamics. The analysis of the dual-task reaction times confirmed that both the temporal and spatial constraints impacted the attentional resources allocated to the finger-tapping tasks. Overall, our work suggests that moving fast and slow involve distinct timing strategies that are characterized by contrasting attentional demands.

9.
Neuroimage ; 188: 807-820, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30735828

RESUMEN

Recent advances in parallel imaging and simultaneous multi-slice techniques have permitted whole-brain fMRI acquisitions at sub-second sampling intervals, without significantly sacrificing the spatial coverage and resolution. Apart from probing brain function at finer temporal scales, faster sampling rates may potentially lead to enhanced functional sensitivity, owing possibly to both cleaner neural representations (due to less aliased physiological noise) and additional statistical benefits (due to more degrees of freedom for a fixed scan duration). Accompanying these intriguing aspects of fast acquisitions, however, confusion has also arisen regarding (1) how to preprocess/analyze these fast fMRI data, and (2) what exactly is the extent of benefits with fast acquisitions, i.e., how fast is fast enough for a specific research aim? The first question is motivated by the altered spectral distribution and noise characteristics at short sampling intervals, while the second question seeks to reconcile the complicated trade-offs between the functional contrast-to-noise ratio and the effective degrees of freedom. Although there have been recent efforts to empirically approach different aspects of these two questions, in this work we discuss, from a theoretical perspective accompanied by some illustrative, proof-of-concept experimental in vivo human fMRI data, a few considerations that are rarely mentioned, yet are important for both preprocessing and optimizing statistical inferences for studies that employ acquisitions with sub-second sampling intervals. Several summary recommendations include concerns regarding advisability of relying on low-pass filtering to de-noise physiological contributions, employment of statistical models with sufficient complexity to account for the substantially increased serial correlation, and cautions regarding using rapid sampling to enhance functional sensitivity given that different analysis models may associate with distinct trade-offs between contrast-to-noise ratios and the effective degrees of freedom. As an example, we demonstrate that as TR shortens, the intrinsic differences in how noise is accommodated in general linear models and Pearson correlation analyses (assuming Gaussian distributed stochastic signals and noise) can result in quite different outcomes, either gaining or losing statistical power.


Asunto(s)
Encéfalo/diagnóstico por imagen , Neuroimagen Funcional/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Estadísticos , Conectoma/métodos , Conectoma/normas , Neuroimagen Funcional/normas , Humanos , Interpretación de Imagen Asistida por Computador/normas , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Proyectos de Investigación , Factores de Tiempo
10.
Neuroimage ; 164: 202-213, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28163143

RESUMEN

Current studies of resting-state connectivity rely on coherent signal fluctuations at frequencies below 0.1 Hz, however, recent studies using high-speed fMRI have shown that fluctuations above 0.5 Hz may exist. This study replicates the feasibility of measuring high frequency (HF) correlations in six healthy controls and a patient with a brain tumor while analyzing non-physiological signal sources via simulation. Resting-state data were acquired using a high-speed multi-slab echo-volumar imaging pulse sequence with 136 ms temporal resolution. Bandpass frequency filtering in combination with sliding window seed-based connectivity analysis using running mean of the correlation maps was employed to map HF correlations up to 3.7 Hz. Computer simulations of Rician noise and the underlying point spread function were analyzed to estimate baseline spatial autocorrelation levels in four major networks (auditory, sensorimotor, visual, and default-mode). Using seed regions based on Brodmann areas, the auditory and default-mode networks were observed to have significant frequency band dependent HF correlations above baseline spatial autocorrelation levels. Correlations in the sensorimotor network were at trend level. The auditory network was still observed using a unilateral single voxel seed. In the patient, HF auditory correlations showed a spatial displacement near the tumor consistent with the displacement seen at low frequencies. In conclusion, our data suggest that HF connectivity in the human brain may be observable with high-speed fMRI, however, the detection sensitivity may depend on the network observed, data acquisition technique, and analysis method.


Asunto(s)
Corteza Auditiva/fisiología , Mapeo Encefálico/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Adulto , Corteza Auditiva/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Descanso , Adulto Joven
11.
J Inequal Appl ; 2018(1): 233, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839661

RESUMEN

The paper studies the estimation and the portmanteau test for double AR ( p ) model with Laplace ( a , b ) distribution. The double AR ( p ) model is investigated to propose firstly the quasi-maximum exponential likelihood estimator, design a portmanteau test of double AR ( p ) on the basis of autocorrelation function, and then establish some asymptotic results. Finally, an empirical study shows that the estimation and the portmanteau test obtained in this paper are very feasible and more effective.

12.
Br J Math Stat Psychol ; 71(1): 96-116, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28898401

RESUMEN

Autocorrelation and partial autocorrelation, which provide a mathematical tool to understand repeating patterns in time series data, are often used to facilitate the identification of model orders of time series models (e.g., moving average and autoregressive models). Asymptotic methods for testing autocorrelation and partial autocorrelation such as the 1/T approximation method and the Bartlett's formula method may fail in finite samples and are vulnerable to non-normality. Resampling techniques such as the moving block bootstrap and the surrogate data method are competitive alternatives. In this study, we use a Monte Carlo simulation study and a real data example to compare asymptotic methods with the aforementioned resampling techniques. For each resampling technique, we consider both the percentile method and the bias-corrected and accelerated method for interval construction. Simulation results show that the surrogate data method with percentile intervals yields better performance than the other methods. An R package pautocorr is used to carry out tests evaluated in this study.


Asunto(s)
Simulación por Computador , Interpretación Estadística de Datos , Modelos Estadísticos , Algoritmos , Matemática , Método de Montecarlo , Lenguajes de Programación , Reproducibilidad de los Resultados
13.
Am Nat ; 190(4): 570-583, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28937813

RESUMEN

Biological populations are strongly influenced by random variations in their environment, which are often autocorrelated in time. For disturbance specialist plant populations, the frequency and intensity of environmental stochasticity (via disturbances) can drive the qualitative nature of their population dynamics. In this article, we extended our earlier model to explore the effect of temporally autocorrelated disturbances on population persistence. In our earlier work, we only assumed disturbances were independent and identically distributed in time. We proved that the plant seed bank population converges in distribution, and we showed that the mean and variance in seed bank population size were both increasing functions of the autocorrelation coefficient for all parameter values considered, but the interplay between increasing population size and increasing variability caused interesting relationships between quasi-extinction probability and autocorrelation. For example, for populations with low seed survival, fecundity, and disturbance frequency, increasingly positive autocorrelated disturbances decreased quasi-extinction probability. Higher disturbance frequency coupled with low seed survival and fecundity caused a nonmontone relationship between autocorrelation and quasi-extinction, where increasingly positive autocorrelations eventually caused an increase in quasi-extinction probability. For higher seed survival, fecundity, and/or disturbance frequency, quasi-extinction probability was generally a monotonically increasing function of the autocorrelation coefficient.


Asunto(s)
Ambiente , Plantas , Banco de Semillas , Modelos Biológicos , Densidad de Población , Dinámica Poblacional
14.
Hum Mov Sci ; 55: 31-42, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28750259

RESUMEN

Long-range autocorrelations (LRA) are a robust feature of rhythmic movements, which may provide important information about neural control and potentially constitute a powerful marker of dysfunction. A clear difficulty associated with the assessment of LRA is that it requires a large number of cycles to generate reliable results. Here we investigate how series length impacts the reliability of LRA assessment. A total of 94 time series extracted from walking or cycling tasks were re-assessed with series length varying from 64 to 512 data points. LRA were assessed using an approach combining the rescaled range analysis or the detrended fluctuation analysis (Hurst exponent, H), along with the shape of the power spectral density (α exponent). The statistical precision was defined as the ability to obtain estimates for H and α that are consistent with their theoretical relationship, irrespective of the series length. The sensitivity consisted of testing whether significant differences between experimental conditions found in the original studies when considering 512 data points persisted with shorter series. We also investigate the use of evenly-spaced diffusion plots as a methodological improvement of original version of methods for short series. Our results show that the reliable assessment of LRA requires 512 data points, or no shorter than 256 data points provided that more robust methods are considered such as the evenly-spaced algorithms. Such series can be reasonably obtained in clinical populations with moderate, or even more severe, gait impairments and open the perspective to extend the use of LRA assessment as a marker of gait stability applicable to a broad range of locomotor disorders.


Asunto(s)
Ciclismo/fisiología , Caminata/fisiología , Algoritmos , Ciclismo/estadística & datos numéricos , Cognición/fisiología , Marcha/fisiología , Voluntarios Sanos , Humanos , Locomoción/fisiología , Pruebas Psicológicas , Reproducibilidad de los Resultados , Caminata/estadística & datos numéricos , Adulto Joven
15.
Neuroimage ; 141: 262-272, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27475291

RESUMEN

Quickly detecting and correcting mistakes is a crucial brain function. EEG studies have identified an idiosyncratic electrophysiological signature of online error correction, termed midfrontal theta. Midfrontal theta has so far been investigated over the fast time-scale of a few hundred milliseconds. But several aspects of behavior and brain activity unfold over multiple time scales, displaying "scale-free" dynamics that have been linked to criticality and optimal flexibility when responding to changing environmental demands. Here we used a novel line-tracking task to demonstrate that midfrontal theta is a transient yet non-phase-locked response that is modulated by task performance over at least three time scales: a few hundred milliseconds at the onset of a mistake, task performance over a fixed window of the previous 5s, and scale-free-like fluctuations over many tens of seconds. These findings provide novel evidence for a role of midfrontal theta in online behavioral adaptation, and suggest new approaches for linking EEG signatures of human executive functioning to its neurobiological underpinnings.


Asunto(s)
Adaptación Fisiológica/fisiología , Conflicto Psicológico , Lóbulo Frontal/fisiología , Potenciación a Largo Plazo/fisiología , Tiempo de Reacción/fisiología , Análisis y Desempeño de Tareas , Ritmo Teta/fisiología , Adulto , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Red Nerviosa/fisiología , Factores de Tiempo
16.
ACS Comb Sci ; 18(8): 490-8, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27280735

RESUMEN

Antimicrobial peptides (AMPs) represent promising alternatives to fight against bacterial pathogens. However, cellular toxicity remains one of the main concerns in the early development of peptide-based drugs. This work introduces the first multitasking (mtk) computational model focused on performing simultaneous predictions of antibacterial activities, and cytotoxicities of peptides. The model was created from a data set containing 3592 cases, and it displayed accuracy higher than 96% for classifying/predicting peptides in both training and prediction (test) sets. The technique known as alanine scanning was computationally applied to illustrate the calculation of the quantitative contributions of the amino acids (in their respective positions of the sequence) to the biological effects of a defined peptide. A small library formed by 10 peptides was generated, where peptides were designed by considering the interpretations of the different descriptors in the mtk-computational model. All the peptides were predicted to exhibit high antibacterial activities against multiple bacterial strains, and low cytotoxicity against various cell types. The present mtk-computational model can be considered a very useful tool to support high throughput research for the discovery of potent and safe AMPs.


Asunto(s)
Antibacterianos/química , Péptidos/química , Aminoácidos/química , Animales , Antibacterianos/farmacología , Antibacterianos/toxicidad , Línea Celular , Descubrimiento de Drogas , Bacterias Gramnegativas/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Estructura Molecular , Péptidos/farmacología , Péptidos/toxicidad , Relación Estructura-Actividad Cuantitativa , Ratas
17.
J Multivar Anal ; 130: 21-26, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25147413

RESUMEN

In this article, we propose a computationally efficient approach to estimate (large) p-dimensional covariance matrices of ordered (or longitudinal) data based on an independent sample of size n. To do this, we construct the estimator based on a k-band partial autocorrelation matrix with the number of bands chosen using an exact multiple hypothesis testing procedure. This approach is considerably faster than many existing methods and only requires inversion of (k + 1)-dimensional covariance matrices. The resulting estimator is positive definite as long as k < n (where p can be larger than n). We make connections between this approach and banding the Cholesky factor of the modified Cholesky decomposition of the inverse covariance matrix (Wu and Pourahmadi, 2003) and show that the maximum likelihood estimator of the k-band partial autocorrelation matrix is the same as the k-band inverse Cholesky factor. We evaluate our estimator via extensive simulations and illustrate the approach using high-dimensional sonar data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA