Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(14)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38316565

RESUMEN

Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time. Previous work has identified fMRI functional connectivity (FC) networks that predict an individual's ability to sustain attention and vary with attentional state from 1 min to the next. However, traditional dynamic FC approaches typically lack the temporal precision to capture moment-to-moment network fluctuations. Recently, researchers have "unfurled" traditional FC matrices in "edge cofluctuation time series" which measure timepoint-by-timepoint cofluctuations between regions. Here we apply event-based and parametric fMRI analyses to edge time series to capture moment-to-moment fluctuations in networks related to attention. In two independent fMRI datasets examining young adults of both sexes in which participants performed a sustained attention task, we identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained attention. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest-based approaches, up to one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large potential in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.


Asunto(s)
Atención , Encéfalo , Masculino , Femenino , Adulto Joven , Humanos , Modelos Lineales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Atención/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-37985597

RESUMEN

Attention fluctuates between optimal and suboptimal states. However, whether these fluctuations affect how we learn visual regularities remains untested. Using web-based real-time triggering, we investigated the impact of sustained attentional state on statistical learning using online and offline measures of learning. In three experiments (N = 450), participants performed a continuous performance task (CPT) with shape stimuli. Unbeknownst to participants, we measured response times (RTs) preceding each trial in real time and inserted distinct shape triplets in the trial stream when RTs indicated that a participant was attentive or inattentive. We measured online statistical learning using changes in RTs to regular triplets relative to random triplets encountered in the same attentional states. We measured offline statistical learning with a target detection task in which participants responded to target shapes selected from the regular triplets and with tasks in which participants explicitly re-created the regular triplets or selected regular shapes from foils. Online learning evidence was greater in high vs. low attentional states when combining data from all three experiments, although this was not evident in any experiment alone. On the other hand, we saw no evidence of impacts of attention fluctuations on measures of statistical learning collected offline, after initial exposure in the CPT. These results suggest that attention fluctuations may impact statistical learning while regularities are being extracted online, but that these effects do not persist to subsequent tests of learning about regularities.

3.
Front Hum Neurosci ; 16: 971314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248697

RESUMEN

Natural fluctuations in sustained attention can lead to attentional failures in everyday tasks and even dangerous incidences. These fluctuations depend on personal factors, as well as task characteristics. So far, our understanding of sustained attention is partly due to the common usage of laboratory setups and tasks, and the complex interplay between behavior and brain activity. The focus of the current study was thus to test the feasibility of applying a single-channel wireless EEG to monitor patterns of sustained attention during a set of ecological tasks. An EEG marker of attention (BEI-Brain Engagement Index) was continuously recorded from 42 healthy volunteers during auditory and visual tasks from the Test of Everyday Attention (TEA) and Trail Making Test (TMT). We found a descending pattern of both performance and BEI in the auditory tasks as task complexity increases, while the increase in performance and decrease in BEI on the visual task. In addition, patterns of BEI in the complex tasks were used to detect outliers and the optimal range of attention through exploratory models. The current study supports the feasibility of combined electrophysiological and neurocognitive investigation of sustained attention in ecological tasks yielding unique insights on patterns of sustained attention as a function of task modality and task complexity.

4.
Proc Natl Acad Sci U S A ; 117(7): 3797-3807, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32019892

RESUMEN

The ability to sustain attention differs across people and changes within a single person over time. Although recent work has demonstrated that patterns of functional brain connectivity predict individual differences in sustained attention, whether these same patterns capture fluctuations in attention within individuals remains unclear. Here, across five independent studies, we demonstrate that the sustained attention connectome-based predictive model (CPM), a validated model of sustained attention function, generalizes to predict attentional state from data collected across minutes, days, weeks, and months. Furthermore, the sustained attention CPM is sensitive to within-subject state changes induced by propofol as well as sevoflurane, such that individuals show functional connectivity signatures of stronger attentional states when awake than when under deep sedation and light anesthesia. Together, these results demonstrate that fluctuations in attentional state reflect variability in the same functional connectivity patterns that predict individual differences in sustained attention.


Asunto(s)
Atención , Encéfalo/fisiología , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Conectoma , Función Ejecutiva , Femenino , Humanos , Individualidad , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven
5.
Accid Anal Prev ; 126: 198-208, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29061281

RESUMEN

Attention lapses and fatigue are a main source of impaired performance that can lead to accidents. This study analyzed electroencephalographic (EEG) dynamics and body skin temperature as markers of attentional fluctuations in non-sleep deprived subjects during a 45min Psychomotor Vigilance Task (PVT). Independent Component Analysis and time-frequency analysis were used to evaluate the EEG data. Results showed a positive association between distal and distal-to-proximal gradient (DPG) temperatures and reaction time (RT); increments in EEG power in alpha-, theta- and beta-band frequencies in parieto-occipital, central-medial and frontal components, were associated with poor performance (slower RT) in the task. This generalized power increment fits with an increased activity in the default mode network, associated with attention lapses. This study highlights the potential use of the PVT as a tool to obtain individual physiological indices of vigilance and fatigue that could be applied to other vigilance tasks typically performed in occupational settings.


Asunto(s)
Atención/fisiología , Desempeño Psicomotor/fisiología , Temperatura , Vigilia/fisiología , Adulto , Electroencefalografía , Fatiga/complicaciones , Femenino , Humanos , Tiempo de Reacción/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA