Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39056942

RESUMEN

The controllability of complex networks is a core issue in network research. Assessing the controllability robustness of networks under destructive attacks holds significant practical importance. This paper studies the controllability of networks from the perspective of malicious attacks. A novel attack model is proposed to evaluate and challenge network controllability. This method disrupts network controllability with high precision by identifying and targeting critical candidate nodes. The model is compared with traditional attack methods, including degree-based, betweenness-based, closeness-based, pagerank-based, and hierarchical attacks. Results show that the model outperforms these methods in both disruption effectiveness and computational efficiency. Extensive experiments on both synthetic and real-world networks validate the superior performance of this approach. This study provides valuable insights for identifying key nodes crucial for maintaining network controllability. It also offers a solid framework for enhancing network resilience against malicious attacks.

2.
Sensors (Basel) ; 23(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37837004

RESUMEN

Cybersecurity is a critical issue in today's internet world. Classical security systems, such as firewalls based on signature detection, cannot detect today's sophisticated zero-day attacks. Machine learning (ML) based solutions are more attractive for their capabilities of detecting anomaly traffic from benign traffic, but to develop an ML-based anomaly detection system, we need meaningful or realistic network datasets to train the detection engine. There are many public network datasets for ML applications. Still, they have limitations, such as the data creation process and the lack of diverse attack scenarios or background traffic. To create a good detection engine, we need a realistic dataset with various attack scenarios and various types of background traffic, such as HTTPs, streaming, and SMTP traffic. In this work, we have developed realistic network data or datasets considering various attack scenarios and diverse background/benign traffic. Furthermore, considering the importance of distributed denial of service (DDoS) attacks, we have compared the performance of detecting anomaly traffic of some classical supervised and our prior developed unsupervised ML algorithms based on the convolutional neural network (CNN) and pseudo auto-encoder (AE) architecture based on the created datasets. The results show that the performance of the CNN-Pseudo-AE is comparable to that of many classical supervised algorithms. Hence, the CNN-Pseudo-AE algorithm is promising in actual implementation.

3.
Entropy (Basel) ; 22(9)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-33286795

RESUMEN

Attack graph modeling aims to generate attack models by investigating attack behaviors recorded in intrusion alerts raised in network security devices. Attack models can help network security administrators discover an attack strategy that intruders use to compromise the network and implement a timely response to security threats. However, the state-of-the-art algorithms for attack graph modeling are unable to obtain a high-level or global-oriented view of the attack strategy. To address the aforementioned issue, considering the similarity between attack behavior and workflow, we employ a heuristic process mining algorithm to generate the initial attack graph. Although the initial attack graphs generated by the heuristic process mining algorithm are complete, they are extremely complex for manual analysis. To improve their readability, we propose a graph segmentation algorithm to split a complex attack graph into multiple subgraphs while preserving the original structure. Furthermore, to handle massive volume alert data, we propose a distributed attack graph generation algorithm based on Hadoop MapReduce and a distributed attack graph segmentation algorithm based on Spark GraphX. Additionally, we conduct comprehensive experiments to validate the performance of the proposed algorithms. The experimental results demonstrate that the proposed algorithms achieve considerable improvement over comparative algorithms in terms of accuracy and efficiency.

4.
IEEE Trans Emerg Top Comput Intell ; 4(4): 450-467, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33748635

RESUMEN

Machine Learning (ML) algorithms, specifically supervised learning, are widely used in modern real-world applications, which utilize Computational Intelligence (CI) as their core technology, such as autonomous vehicles, assistive robots, and biometric systems. Attacks that cause misclassifications or mispredictions can lead to erroneous decisions resulting in unreliable operations. Designing robust ML with the ability to provide reliable results in the presence of such attacks has become a top priority in the field of adversarial machine learning. An essential characteristic for rapid development of robust ML is an arms race between attack and defense strategists. However, an important prerequisite for the arms race is access to a well-defined system model so that experiments can be repeated by independent researchers. This paper proposes a fine-grained system-driven taxonomy to specify ML applications and adversarial system models in an unambiguous manner such that independent researchers can replicate experiments and escalate the arms race to develop more evolved and robust ML applications. The paper provides taxonomies for: 1) the dataset, 2) the ML architecture, 3) the adversary's knowledge, capability, and goal, 4) adversary's strategy, and 5) the defense response. In addition, the relationships among these models and taxonomies are analyzed by proposing an adversarial machine learning cycle. The provided models and taxonomies are merged to form a comprehensive system-driven taxonomy, which represents the arms race between the ML applications and adversaries in recent years. The taxonomies encode best practices in the field and help evaluate and compare the contributions of research works and reveals gaps in the field.

5.
Risk Anal ; 39(12): 2766-2785, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31361041

RESUMEN

Defenders have to enforce defense strategies by taking decisions on allocation of resources to protect the integrity and survivability of cyber-physical systems (CPSs) from intentional and malicious cyber attacks. In this work, we propose an adversarial risk analysis approach to provide a novel one-sided prescriptive support strategy for the defender to optimize the defensive resource allocation, based on a subjective expected utility model, in which the decisions of the adversaries are uncertain. This increases confidence in cyber security through robustness of CPS protection actions against uncertain malicious threats compared with prescriptions provided by a classical defend-attack game-theoretical approach. We present the approach and the results of its application to a nuclear CPS, specifically the digital instrumentation and control system of the advanced lead-cooled fast reactor European demonstrator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA