Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
J Leukoc Biol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226137

RESUMEN

Pathogenic CD8+T cells play an essential role in neuroinflammation and neural injury, which leads to the progression of inflammatory neurological disorders. Thus, blocking the infiltration of CD8+T cells is necessary for the treatment of neuroinflammatory diseases. Our previous study demonstrated that Astragalus polysaccharides (APS) could significantly reduce the infiltration of CD8+T cells in experimental autoimmune encephalomyelitis (EAE) mice. However, the mechanism by which APS suppress CD8+T cell infiltration remains elusive. In this study, we further found that APS could reduce the CD8+T cell infiltration in EAE and lipopolysaccharide (LPS)-induced neuroinflammatory model. Furthermore, we established the mouse brain endothelial cell (bEnd.3) inflammatory injury model by interleukin-1ß (IL-1ß) or LPS in vitro. The results showed that APS treatment downregulated the expression of vascular cell adhesion molecule1 (VCAM1) to decrease the adhesion of CD8+T cells to bEnd.3 cells. APS also upregulated the expression of zonula occluden-1 (ZO-1) and vascular endothelial cadherin (VE-cadherin) to reduce the trans-endothelial migration of CD8+T cells. The PI3K/AKT signaling pathway might mediate this protective effect of APS on bEnd.3 cells against inflammatory injury. In addition, we demonstrated the protective effect of APS on the integrity of brain endothelial cells in an LPS-induced neuroinflammatory model. In summary, our results indicate that APS can reduce peripheral CD8+T cell infiltration via enhancing the barrier function of brain endothelial cells, it may be a potential for the prevention of neuroinflammatory diseases.

2.
J Anim Sci Biotechnol ; 15(1): 106, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103958

RESUMEN

BACKGROUND: The intestinal barrier is the first line of defense against intestinal invasion by pathogens and foreign antigens and is closely associated with the gut microbiota. Astragalus polysaccharides (APS) have a long history of use in traditional Chinese medicine owing to its protective properties against intestinal barrier function. The mechanism of APS-induced gut microbiota enhancing intestinal barrier function is urgently needed. RESULTS: Dietary polysaccharide deprivation induced intestinal barrier dysfunction, decreased growth performance, altered microbial composition (Faecalibacterium, Dorea, and Coprobacillus), and reduced isobutyrate concentration. The results showed that APS facilitates intestinal barrier function in broiler chickens, including a thicker mucus layer, reduced crypt depth, and the growth of tight junction proteins. We studied the landscape of APS-induced gut microbiota and found that APS selectively promoted the growth of Parabacteroides, a commensal bacterium that plays a predominant role in enhancing intestinal barrier function. An in vitro growth assay further verified that APS selectively increased the abundance of Parabacteroides distasonis and Bacteroides uniformis. Dietary APS supplementation increased the concentrations of isobutyrate and bile acid (mainly chenodeoxycholic acid and deoxycholate acid) and activated signaling pathways related to intestinal barrier function (such as protein processing in the endoplasmic reticulum, tight junctions, and adherens junction signaling pathways). CONCLUSIONS: APS intervention restored the dietary polysaccharide-induced dysfunction of the intestinal barrier by selectively promoting the abundance of Parabacteroides distasonis, and increasing the concentrations of isobutyrate and bile acids (mainly CDCA and DCA). These findings suggest that APS-induced gut microbiota and metabolic niches are promising strategies for enhancing intestinal barrier function.

3.
Curr Issues Mol Biol ; 46(8): 7782-7794, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39194678

RESUMEN

Astragalus polysaccharides (APSs), the compounds extracted from the common herb Astragalus membranaceus, have been extensively studied for their antitumor properties. In this study, we investigated the effect of APS on lung adenocarcinoma A549 cells. The effects of APS and the anti-diabetic drug metformin on apoptosis and ferroptosis were compared. Furthermore, the combination treatment of APS and metformin was also investigated. We found that APS not only reduced the growth of lung cancer cells but also had a synergistic effect with metformin on A549 cells. The study results showed that it may be promising to use APS and metformin as a combination therapy for the treatment of lung adenocarcinoma.

4.
Pharmaceuticals (Basel) ; 17(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794206

RESUMEN

Astragalus polysaccharide (APS) derived from A. membranaceus plays a crucial role in traditional Chinese medicine. These polysaccharides have shown antitumor effects and are considered safe. Thus, they have become increasingly important in cancer immunotherapy. APS can limit the spread of cancer by influencing immune cells, promoting cell death, triggering cancer cell autophagy, and impacting the tumor microenvironment. When used in combination with other therapies, APS can enhance treatment outcomes and reduce toxicity and side effects. APS combined with immune checkpoint inhibitors, relay cellular immunotherapy, and cancer vaccines have broadened the application of cancer immunotherapy and enhanced treatment effectiveness. By summarizing the research on APS in cancer immunotherapy over the past two decades, this review elaborates on the anticancer mechanism of APS and its use in cancer immunotherapy and clinical trials. Considering the multiple roles of APS, this review emphasizes the importance of using APS as an adjunct to cancer immunotherapy and compares other polysaccharides with APS. This discussion provides insights into the specific mechanism of action of APS, reveals the molecular targets of APS for developing effective clinical strategies, and highlights the wide application of APS in clinical cancer therapy in the future.

5.
Int J Biol Macromol ; 271(Pt 1): 132580, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788871

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that is significantly influenced by an imbalance in the gut microbiota. Astragalus membranaceus, particularly its polysaccharide components, has shown therapeutic potential for the treatment of UC, although the specific active constituents and their mechanistic pathways remain to be fully elucidated. In this study, we investigated two molecular weight fractions of Astragalus polysaccharides (APS), APS1 (Mw < 10 kDa) and APS2 (10 kDa < Mw < 50 kDa), isolated by ultrafiltration, focusing on their prebiotic effects, effects on UC, and the underlying mechanism. Our results showed that both APS1 and APS2 exhibit prebiotic properties, with APS1 significantly outperforming APS2 in ameliorating UC symptoms. APS1 significantly attenuated weight loss and UC manifestations, reduced colonic pathology, and improved intestinal mucosal barrier integrity. In addition, APS1 significantly reduced the levels of inflammatory cytokines in the serum and colonic tissue, and downregulated colonic chemokines. Furthermore, APS1 ameliorated dextran sulfate sodium salt (DSS)-induced intestinal dysbiosis by promoting the growth of beneficial microbes and inhibiting the proliferation of potential pathogens, leading to a significant increase in short-chain fatty acids. In conclusion, this study highlights the potential of APS1 as a novel prebiotic for the prevention and treatment of UC.


Asunto(s)
Planta del Astrágalo , Colitis Ulcerosa , Polisacáridos , Prebióticos , Colitis Ulcerosa/tratamiento farmacológico , Polisacáridos/farmacología , Polisacáridos/química , Animales , Planta del Astrágalo/química , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Citocinas/metabolismo , Sulfato de Dextran , Ácidos Grasos Volátiles/metabolismo , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Disbiosis/tratamiento farmacológico
6.
Biomed J ; : 100741, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38677490

RESUMEN

BACKGROUND: The impact and underlying mechanisms of astragalus polysaccharide (APS) on prostate cancer, particularly its role in immunomodulation, remain inadequately elucidated. METHODS: This study employed the XTT assay for assessing proliferation in prostate cancer cells and macrophages. T cell proliferation was determined using the Carboxyfluorescein diacetate succinimidyl ester labeling assay. APS's effect on T cells and macrophages was scrutinized via flow cytometry, Western blot analysis, ELISA, quantitative PCR and cytokine membrane arrays. The effect of APS on interaction between PD-L1 and PD-1 was investigated by the PD-L1/PD-1 homogeneous assay. Additionally, the impact of conditioned medium from T cells and macrophages on PC-3 cell migration was explored through migration assays. RESULTS: It was observed that APS at concentrations of 1 and 5 mg/mL enhanced the proliferation of CD8+ T cells. At a concentration of 5 mg/mL, APS activated both CD4+ and CD8+ T cells, attenuated PD-L1 expression in prostate cancer cells stimulated with interferon gamma (IFN-γ) or oxaliplatin, and moderately decreased the population of PD-1+ CD4+ and PD-1+ CD8+ T cells. Furthermore, APS at this concentration impeded the interaction between PD-L1 and PD-1, inhibited the promotion of prostate cancer migration mediated by RAW 264.7 cells, THP-1 cells, CD4+ T cells, and CD8+ T cells, and initiated apoptosis in prostate cancer cells treated with conditioned medium from APS (5 mg/mL)-treated CD8+ T cells, RAW 264.7 cells, or THP-1 cells. CONCLUSION: The findings indicate a potential role of 5 mg/mL APS in modulating the PD-1/PD-L1 pathway and influencing the immune response, encompassing T cells and macrophages. Consequently, further in vivo research is recommended to assess the efficacy of APS.

7.
Pharmacol Res ; 203: 107179, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615876

RESUMEN

Exosomes, small yet vital extracellular vesicles, play an integral role in intercellular communication. They transport critical components, such as proteins, lipid bilayers, DNA, RNA, and glycans, to target cells. These vesicles are crucial in modulating the extracellular matrix and orchestrating signal transduction processes. In oncology, exosomes are pivotal in tumor growth, metastasis, drug resistance, and immune modulation within the tumor microenvironment. Exosomal proteins, noted for their stability and specificity, have garnered widespread attention. This review delves into the mechanisms of exosomal protein loading and their impact on tumor development, with a focus on the regulatory effects of natural products and traditional Chinese medicine on exosomal protein loading and function. These insights not only offer new strategies and methodologies for cancer treatment but also provide scientific bases and directions for future clinical applications.


Asunto(s)
Productos Biológicos , Exosomas , Medicina Tradicional China , Neoplasias , Humanos , Exosomas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Microambiente Tumoral/efectos de los fármacos
8.
Molecules ; 29(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675511

RESUMEN

Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants.


Asunto(s)
Antioxidantes , Astragalus propinquus , Medicamentos Herbarios Chinos , Antioxidantes/farmacología , Antioxidantes/química , Astragalus propinquus/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Planta del Astrágalo/química , Estrés Oxidativo/efectos de los fármacos , Animales , Flavonoides/química , Flavonoides/farmacología , Medicina Tradicional China , Saponinas/farmacología , Saponinas/química
9.
Front Oncol ; 14: 1334915, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515577

RESUMEN

The dry root of the soybean plant Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge) Hsiao or A. membranaceus (Fisch) Bge, Astragali Radix (AR) has a long medicinal history. Astragalus polysaccharide (APS), the natural macromolecule that exhibits immune regulatory, anti-inflammatory, anti-tumor, and other pharmacological activities, is an important active ingredient extracted from AR. Recently, APS has been increasingly used in cancer therapy owing to its anti-tumor ability as it prevents the progression of prostate, liver, cervical, ovarian, and non-small-cell lung cancer by suppressing tumor cell growth and invasion and enhancing apoptosis. In addition, APS enhances the sensitivity of tumors to antineoplastic agents and improves the body's immunity. This macromolecule has prospects for broad application in tumor therapy through various pathways. In this article, we present the latest progress in the research on the anti-tumor effects of APS and its underlying mechanisms, aiming to provide novel theoretical support and reference for its use in cancer therapy.

10.
Biomed Pharmacother ; 173: 116350, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430632

RESUMEN

Diabetic peripheral neuropathy (DPN) is one of the most prevalent consequences of diabetes, with a high incidence and disability rate. The DPN's pathogenesis is extremely complex and yet to be fully understood. Persistent high glucose metabolism, nerve growth factor deficiency, microvascular disease, oxidative stress, peripheral nerve cell apoptosis, immune factors, and other factors have been implicated in the pathogenesis of DPN. Astragalus mongholicus is a commonly used plant used to treat DPN in clinical settings. Its rich chemical components mainly include Astragalus polysaccharide, Astragalus saponins, Astragalus flavones, etc., which play a vital role in the treatment of DPN. This review aimed to summarize the pathogenesis of DPN and the studies on the mechanism of the effective components of Astragalus mongholicus in treating DPN. This is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.


Asunto(s)
Planta del Astrágalo , Diabetes Mellitus , Neuropatías Diabéticas , Medicamentos Herbarios Chinos , Astragalus propinquus , Neuropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
11.
Phytomedicine ; 128: 155492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479258

RESUMEN

BACKGROUND: The damage of chemotherapy drugs to immune function and intestinal mucosa is a common side effect during chemotherapy. Astragalus polysaccharides (APS) exhibit immunomodulatory properties and are recognized for preserving the integrity of the human intestinal barrier. Nevertheless, their application and mechanisms of action in chemotherapy-induced immune damage and intestinal barrier disruption remain insufficiently explored. PURPOSE: This study delved into investigating how APS mitigates chemotherapy-induced immune dysfunction and intestinal mucosal injury, while also providing deeper insights into the underlying mechanisms. METHODS: In a chemotherapy mice model induced by 5-fluorouracil (5-Fu), the assessment of APS's efficacy encompassed evaluations of immune organ weight, body weight, colon length, and histopathology. The regulation of different immune cells in spleen was detected by flow cytometry. 16S rRNA gene sequencings, ex vivo microbiome assay, fecal microbiota transplantation (FMT), and targeted metabolomics analysis were applied to explore the mechanisms of APS effected on chemotherapy-induced mice. RESULTS: APS ameliorated chemotherapy-induced damage to immune organs and regulated immune cell differentiation disorders, including CD4+T, CD8+T, CD19+B, F4/80+CD11B+ macrophages. APS also alleviated colon shortening and upregulated the expression of intestinal barrier proteins. Furthermore, APS significantly restored structure of gut microbiota following chemotherapy intervention. Ex vivo microbiome assays further demonstrated the capacity of APS to improve 5-Fu-induced microbiota growth inhibition and compositional change. FMT demonstrated that the regulation of gut microbiota by APS could promote the recovery of immune functions and alleviate shortening of the colon length. Remarkably, APS significantly ameliorated the imbalance of linoleic acid (LA) and α-linolenic acid in polyunsaturated fatty acid (PUFA) metabolism. Further in vitro experiments showed that LA could promote splenic lymphocyte proliferation. In addition, both LA and DGLA down-regulated the secretion of NO and partially up-regulated the percentage of F4/80+CD11B+CD206+ cells. CONCLUSION: APS can effectively ameliorate chemotherapy-induced immune damage and intestinal mucosal disruption by regulating the composition of the gut microbiota and further restoring PUFA metabolism. These findings indicate that APS can serve as an adjuvant to improve the side effects such as intestinal and immune damage caused by chemotherapy.


Asunto(s)
Planta del Astrágalo , Ácidos Grasos Insaturados , Fluorouracilo , Microbioma Gastrointestinal , Polisacáridos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Polisacáridos/farmacología , Ratones , Planta del Astrágalo/química , Ácidos Grasos Insaturados/farmacología , Mucosa Intestinal/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Bazo/efectos de los fármacos , Trasplante de Microbiota Fecal , Colon/efectos de los fármacos
12.
Front Pharmacol ; 15: 1336122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405667

RESUMEN

Background: Epilepsy is a prevalent neurological disease where neuroinflammation plays a significant role in epileptogenesis. Recent studies have suggested that Astragalus polysaccharides (APS) have anti-inflammatory properties, which make them a potential candidate for neuroprotection against central nervous system disease. Nevertheless, the extent of their effectiveness in treating epilepsy remains enigmatic. Therefore, our study aims to investigate the potential of APS to mitigate epileptogenesis and its comorbidities by exploring its underlying mechanism. Methods: Initially, we employed pentylenetetrazol-induced seizure mice to validate APS' effectiveness. Subsequently, we employed network pharmacology analysis to probe the possible targets and signaling pathways of APS in treating epilepsy. Ultimately, we verified the key targets and signaling pathways experimentally, predicting their mechanisms of action. Results: APS have been observed to disturb the acquisition process of kindling, leading to reduced seizure scores and a lower incidence of complete kindling. Moreover, APS has been found to improve cognitive impairments and prevent hippocampal neuronal damage during the pentylenetetrazole (PTZ)-kindling process. Subsequent network pharmacology analysis revealed that APS potentially exerted their anti-epileptic effects by targeting cytokine and toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) signaling pathways. Finally, experimental findings showed that APS efficiently inhibited the activation of astrocytes and reduced the release of pro-inflammatory mediators, such as interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). In addition, APS impeded the activation of the TLR4/NF-κB signaling cascade in a PTZ-induced kindling mouse model. Conclusion: The outcomes of our study suggest that APS exerts an impact on epileptogenesis and mitigates cognitive impairment by impeding neuroinflammatory processes. The mechanism underlying these observations may be attributed to the modulation of the TLR4/NF-κB signaling pathway, resulting in a reduction of the release of inflammatory mediators. These findings partially agree with the predictions derived from network pharmacology analyses. As such, APS represents a potentially innovative and encouraging adjunct therapeutic option for epileptogenesis and cognitive deficit.

13.
BMC Complement Med Ther ; 24(1): 80, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331805

RESUMEN

BACKGROUND: Astragalus polysaccharides (APS) have been verified to have antioxidative and antiaging activities in the mouse liver and brain. However, the effect of APS on aortic endothelial senescence in old rats and its underlying mechanism are currently unclear. Here, we aimed to elucidate the effects of APS on rat aortic endothelial oxidative stress and senescence in vitro and in vivo and investigate the potential molecular targets. METHODS: Twenty-month-old natural aging male rats were treated with APS (200 mg/kg, 400 mg/kg, 800 mg/kg daily) for 3 months. Serum parameters were tested using corresponding assay kits. Aortic morphology was observed by staining with hematoxylin and eosin (H&E) and Verhoeff Van Gieson (VVG). Aging-related protein levels were evaluated using immunofluorescence and western blot analysis. Primary rat aortic endothelial cells (RAECs) were isolated by tissue explant method. RAEC mitochondrial function was evaluated by the mitochondrial membrane potential (MMP) measured with the fluorescent lipophilic cationic dye JC­1. Intracellular total antioxidant capacity (T-AOC) was detected by a commercial kit. Cellular senescence was assessed using senescence-associated-ß-galactosidase (SA-ß-Gal) staining. RESULTS: Treatment of APS for three months was found to lessen aortic wall thickness, renovate vascular elastic tissue, improve vascular endothelial function, and reduce oxidative stress levels in 20-month-old rats. Primary mechanism analysis showed that APS treatment enhanced Sirtuin 1 (SIRT-1) protein expression and decreased the levels of the aging marker proteins p53, p21 and p16 in rat aortic tissue. Furthermore, APS abated hydrogen peroxide (H2O2)-induced cell senescence and restored H2O2-induced impairment of the MMP and T-AOC in RAECs. Similarly, APS increased SIRT-1 and decreased p53, p21 and p16 protein levels in senescent RAECs isolated from old rats. Knockdown of SIRT-1 diminished the protective effect of APS against H2O2-induced RAEC senescence and T-AOC loss, increased the levels of the downstream proteins p53 and p21, and abolished the inhibitory effect of APS on the expression of these proteins in RAECs. CONCLUSION: APS may reduce rat aortic endothelial oxidative stress and senescence via the SIRT-1/p53 signaling pathway.


Asunto(s)
Células Endoteliales , Sirtuina 1 , Ratones , Masculino , Ratas , Animales , Células Endoteliales/metabolismo , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Peróxido de Hidrógeno/farmacología , Senescencia Celular/fisiología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Transducción de Señal , Polisacáridos/farmacología , Polisacáridos/metabolismo
14.
Sci China Life Sci ; 67(4): 680-697, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38206438

RESUMEN

The study of tumor nanovaccines (NVs) has gained interest because they specifically recognize and eliminate tumor cells. However, the poor recognition and internalization by dendritic cells (DCs) and insufficient immunogenicity restricted the vaccine efficacy. Herein, we extracted two molecular-weight Astragalus polysaccharides (APS, 12.19 kD; APSHMw, 135.67 kD) from Radix Astragali and made them self-assemble with OVA257-264 directly forming OVA/APS integrated nanocomplexes through the microfluidic method. The nanocomplexes were wrapped with a sheddable calcium phosphate layer to improve stability. APS in the formed nanocomplexes served as drug carriers and immune adjuvants for potent tumor immunotherapy. The optimal APS-NVs were approximately 160 nm with uniform size distribution and could remain stable in physiological saline solution. The FITC-OVA in APS-NVs could be effectively taken up by DCs, and APS-NVs could stimulate the maturation of DCs, improving the antigen cross-presentation efficiency in vitro. The possible mechanism was that APS can induce DC activation via multiple receptors such as dectin-1 and Toll-like receptors 2 and 4. Enhanced accumulation of APS-NVs both in draining and distal lymph nodes were observed following s.c. injection. Smaller APS-NVs could easily access the lymph nodes. Furthermore, APS-NVs could markedly promote antigen delivery efficiency to DCs and activate cytotoxic T cells. In addition, APS-NVs achieve a better antitumor effect in established B16-OVA melanoma tumors compared with the OVA+Alum treatment group. The antitumor mechanism correlated with the increase in cytotoxic T cells in the tumor region. Subsequently, the poor tumor inhibitory effect of APS-NVs on the nude mouse model of melanoma also confirmed the participation of antitumor adaptive immune response induced by NVs. Therefore, this study developed a promising APS-based tumor NV that is an efficient tumor immunotherapy without systemic side effects.


Asunto(s)
Vacunas contra el Cáncer , Melanoma , Ratones , Animales , Nanovacunas , Melanoma/patología , Células Dendríticas , Adyuvantes Inmunológicos/farmacología , Inmunoterapia , Antígenos , Polisacáridos/química , Ratones Endogámicos C57BL
15.
Int Immunopharmacol ; 126: 111303, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38043269

RESUMEN

Endogenous neural stem cells (NSCs) have the potential to generate remyelinating oligodendrocytes, which play an important role in multiple sclerosis (MS). However, the differentiation of NSCs into oligodendrocytes is insufficient, which is considered a major cause of remyelination failure. Our previous work reported that Astragalus polysaccharides (APS) had a neuroprotective effect on experimental autoimmune encephalomyelitis (EAE) mice. However, it remains unclear whether APS regulate NSCs differentiation in EAE mice. In this study, our data illustrated that APS administration could promote NSCs in the subventricular zone (SVZ) to differentiate into oligodendrocytes. Furthermore, we found that APS significantly improved neuroinflammation and inhibited CD8+T cell infiltration into SVZ of EAE mice. We also found that MOG35-55-specific CD8+T cells suppressed NSCs differentiation into oligodendrocytes by secreting IFN-γ, and APS facilitated the differentiation of NSCs into oligodendrocytes which was related to decreased IFN-γ secretion. In addition, APS treatment did not show a better effect on the NSCs-derived oligodendrogenesis after CD8+T cell depletion. This present study demonstrated that APS alleviated neuroinflammation and CD8+T cell infiltration into SVZ to induce oligodendroglial differentiation, and thus exerted neuroprotective effect. Our findings revealed that reducing the infiltration of CD8+T cells might contribute to enhancing NSCs-derived neurogenesis. And APS might be a promising drug candidate to treat MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Células-Madre Neurales , Fármacos Neuroprotectores , Ratones , Animales , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Diferenciación Celular/fisiología , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Linfocitos T , Ratones Endogámicos C57BL
16.
Reprod Toxicol ; 123: 108520, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056682

RESUMEN

Cantharidin (CTD) is a chemical constituent derived from Mylabris and has good antitumor effects, but its clinical use is restricted by its inherent toxicity. However, few researches have reported its reproductive toxicity and mechanisms. This study aims to assess CTD's toxicity on mouse testes and the protective effect of Astragalus polysaccharides (APS). Briefly, biochemical analysis, histopathology, transmission electron microscopy, immunohistochemistry, and Western blotting were used to evaluate the oxidative damage of mouse testicular tissue after exposure to CTD and treatment by APS. Our research suggests a dramatic decrease in testicular index and serum testosterone levels after CTD exposure. The testis showed obvious oxidative damage accompanied by an increase in mitochondrial autophagy, the Nfr2-Keap1 pathway was inhibited, and the blood-testis barrier was destroyed. Notably, these changes were significantly improved after APS treatment. The internal mechanisms of APS ameliorate CTD-induced testicular oxidative damage in mice may be closely connected to regulatory the Nrf2-Keap1 signaling pathway, restraining autophagy, and repairing the blood-testis barrier, providing theoretical support for further study on the reproductive toxicity mechanism of CTD and clinical treatments to ameliorate it.


Asunto(s)
Cantaridina , Testículo , Masculino , Ratones , Animales , Testículo/metabolismo , Cantaridina/toxicidad , Cantaridina/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Autofagia , Polisacáridos/farmacología , Polisacáridos/metabolismo
17.
Int J Nanomedicine ; 18: 6705-6724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026532

RESUMEN

Purpose: Enhancing the dissolution, permeation and absorption of active components with low solubility and poor permeability is crucial for maximizing therapeutic efficacy and optimizing functionality. The objective of this study is to investigate the potential of natural polysaccharides as carriers to improve the biopharmaceutical properties of active components. Methods: In this study, we employed four representative flavonoids in Astragali Radix, namely Calycosin-7-O-ß-D-glucoside (CAG), Ononin (ON), Calycosin (CA) and Formononetin (FMN), as a demonstration to evaluate the potential of Astragalus polysaccharides (APS) as carriers to improve the biopharmaceutical properties, sush as solubility, permeability, and absorption in vivo. In addition, the microstructure of the flavonoids-APS complexes was characterized, and the interaction mechanism between APS and flavonoids was investigated using multispectral technique and molecular dynamics simulation. Results: The results showed that APS can self-assemble into aggregates with a porous structure and large surface area in aqueous solutions. These aggregates can be loaded with flavonoids through weak intermolecular interactions, such as hydrogen bonding, thereby improving their gastrointestinal stability, solubility, permeability and absorption in vivo. Conclusion: We discovered the self-assembly properties of APS and its potential as carriers. Compared with introducing external excipients, the utilization of natural polysaccharides in plants as carriers may have a unique advantage in enhancing dissolution, permeation and absorption.


Asunto(s)
Planta del Astrágalo , Productos Biológicos , Medicamentos Herbarios Chinos , Flavonoides/química , Planta del Astrágalo/química , Polisacáridos/química , Medicamentos Herbarios Chinos/química
18.
Discov Oncol ; 14(1): 179, 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37741920

RESUMEN

Various new treatments are emerging constantly in anti-tumor therapies, including chemotherapy, immunotherapy, and targeted therapy. However, the efficacy is still not satisfactory. Astragalus polysaccharide is an important bioactive component derived from the dry root of Radix astragali. Studies found that astragalus polysaccharides have gained great significance in increasing the sensitivity of anti-tumor treatment, reducing the side effects of anti-tumor treatment, reversing the drug resistance of anti-tumor drugs, etc. In this review, we focused on the role of astragalus polysaccharides in tumor immune microenvironment. We reviewed the immunomodulatory effect of astragalus polysaccharides on macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes. We found that astragalus polysaccharides can promote the activities of macrophages, dendritic cells, natural killer cells, T lymphocytes, and B lymphocytes and induce the expression of a variety of cytokines and chemokines. Furthermore, we summarized the clinical applications of astragalus polysaccharides in patients with digestive tract tumors. We summarized the effective mechanism of astragalus polysaccharides on digestive tract tumors, including apoptosis induction, proliferation inhibition, immunoactivity regulation, enhancement of the anticancer effect and chemosensitivity. Therefore, in view of the multiple functions of astragalus polysaccharides in tumor immune microenvironment and its clinical efficacy, the combination of astragalus polysaccharides with antitumor therapy such as immunotherapy may provide new sparks to the bottleneck of current treatment methods.

19.
Aging (Albany NY) ; 15(18): 9438-9452, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37733667

RESUMEN

In recent years, the incidence of urothelial carcinoma (UC) has been high in men. The aim of this study was to investigate whether astragalus polysaccharide (APS) could inhibit the development of UC and the specific molecular mechanism. Our data showed that APS inhibited the proliferation of UC cells in a dose-dependent manner, and APS reduced the migratory capacity of RT4 and T24 cells. Further studies revealed that the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed APS-induced cell death, intracellular Fe2+ and malondialdehyde (MDA) accumulation, and lipid peroxidation product deposition. The Western blot and immunofluorescence results showed that APS significantly inhibited the expression of glutathione peroxidase 4 (GPX4) but did not alter the protein level of solute carrier family 7 member 11 (xCT, SLC7A11). Further analysis revealed that APS reduced the activity of xCT in RT4 and T24 cells. Moreover, APS significantly increased the phosphorylation levels of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK) and BECN1 in RT4 and T24 cells, which induced the formation of the BECN1-xCT complex. However, when AMPK was silenced in RT4 and T24 cells, APS-induced ferroptosis was reversed to some extent, indicating that APS-mediated ferroptosis involves AMPK signaling. Moreover, APS has been shown to inhibit tumor growth in nude mice in vivo. In summary, our study demonstrated for the first time that APS could promote the formation of the BECN1-xCT complex in UC cells by activating AMPK/BECN1 signaling, which inhibited the activity of xCT to reduce GPX4 expression, thereby inducing ferroptosis and ultimately inhibiting UC progression.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Masculino , Ratones , Animales , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Desnudos , Polisacáridos/farmacología
20.
Artículo en Inglés | MEDLINE | ID: mdl-37587811

RESUMEN

BACKGROUND: Astragalus polysaccharides (APS), a group of bioactive compounds obtained from the natural source Astragalus membranaceus(AM), exhibits numerous pharmacological actions in the central nervous system, such as anti-inflammatory, antioxidant, and immunomodulatory properties. Despite the remarkable benefits, the effectiveness of APS in treating anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and the corresponding mechanism have yet to be fully understood. As such, this study aims to investigate the impact of APS on anti-NMDAR encephalitis and explore the potential molecular network mechanism. METHODS: The impact of APS intervention on mice with anti-NMDAR encephalitis was assessed, and the possible molecular network mechanism was investigated utilizing network pharmacology and bioinformatics techniques such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),protein-protein interaction (PPI) network, and molecular docking. Enzyme-linked immunosorbent assay (ELISA) was applied to detect the expression of core target proteins. RESULTS: APS significantly ameliorated cognitive impairment and reduced susceptibility to PTZ-induced seizures in mice with anti-NMDAR encephalitis, confirming the beneficial effect of APS on anti-NMDAR encephalitis. Seventeen intersecting genes were identified between APS and anti-NMDAR encephalitis. GO and KEGG analyses revealed the characteristics of the intersecting gene networks. STRING interaction in the PPI network was applied to find crucial molecules. The results of molecular docking suggested that APS may regulate interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) as potential targets in anti-NMDAR encephalitis. Furthermore, the levels of IL-1ß, IL-6, and TNF-α detected by ELISA in anti-NMDAR encephalitis mice were significantly downregulated in response to the administration of APS. CONCLUSION: The findings of this study demonstrate the significant role of APS in the treatment of anti-NMDAR encephalitis, as it effectively suppresses inflammatory cytokines. These results suggest that APS has the potential to be considered as a viable herbal medication for the treatment of anti-NMDAR encephalitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA