Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 264: 122219, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39121820

RESUMEN

The presence of actinobacteria in reservoirs can lead to taste and odor issues, posing potential risks to the safety of drinking water supply. However, the response of actinobacterial communities to environmental factors in drinking water reservoirs remains largely unexplored. To address this gap, this study investigated the community structure and metabolic characteristics of odor-producing actinobacteria in water reservoirs across northern and southern China. The findings revealed differences in the actinobacterial composition across the reservoirs, with Mycobacterium sp. and Candidatus Nanopelagicus being the most prevalent genera. Notably, water temperature, nutrient levels, and metal concentrations were associated with differences in actinobacterial communities, with stochastic processes playing a major role in shaping the community assembly. In addition, three strains of odor-producing actinobacteria were cultured in raw reservoir water, namely Streptomyces antibioticus LJH21, Streptomyces sp. ZEU13, and Streptomyces sp. PQK19, with peak ATP concentrations of 51 nmol/L, 66 nmol/L, and 70 nmol/L, respectively, indicating that odor-producing actinobacteria could remain metabolically active under poor nutrient pressure. Additionally, Streptomyces antibioticus LJH21 produced the highest concentration of geosmin at 24.4 ng/L. These findings enhance our understanding of regional variances and reproductive metabolic mechanisms of actinobacteria in drinking water reservoirs, providing a solid foundation for improving drinking water quality control, especially for taste and odor.


Asunto(s)
Actinobacteria , Agua Potable , Odorantes , Gusto , Agua Potable/microbiología , China , Abastecimiento de Agua , Microbiología del Agua , Naftoles
2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113591

RESUMEN

Understanding the environmental and biological mechanisms shaping latitudinal patterns in microbial diversity is challenging in the field of ecology. Although multiple hypotheses have been proposed to explain these patterns, a consensus has rarely been reached. Here, we conducted a large-scale field survey and microcosm experiments to investigate how environmental heterogeneity and putative trophic interactions (exerted by protist-bacteria associations and T4-like virus-bacteria associations) affect soil bacterial communities along a latitudinal gradient. We found that the microbial latitudinal diversity was kingdom dependent, showing decreasing, clumped, and increasing trends in bacteria, protists, and T4-like viruses, respectively. Climatic and edaphic drivers played predominant roles in structuring the bacterial communities; the intensity of the climatic effect increased sharply from 30°N to 32°N, whereas the intensity of the edaphic effect remained stable. Biotic associations were also essential in shaping the bacterial communities, with protist-bacteria associations showing a quadratic distribution, whereas virus-bacteria associations were significant only at high latitudes. The microcosm experiments further revealed that the temperature component, which is affiliated with climate conditions, is the primary regulator of trophic associations along the latitudinal gradient. Overall, our study highlights a previously underestimated mechanism of how the putative biotic interactions influence bacterial communities and their response to environmental gradients.


Asunto(s)
Bacterias , Microbiología del Suelo , Temperatura , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Eucariontes , Microbiota
3.
Environ Res ; 259: 119561, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972345

RESUMEN

Due to rapid urbanization, the Beibu Gulf, a semi-closed gulf in the northwestern South China Sea, faces escalating ecological and environmental threats. Understanding the assembly mechanisms and driving factors of bacterioplankton in the Beibu Gulf is crucial for preserving its ecological functions and services. In the present study, we investigated the spatiotemporal dynamics of bacterioplankton communities and their assembly mechanisms in the Beibu Gulf based on the high-throughput sequencing of the bacterial 16 S rRNA gene. Results showed significantly higher bacterioplankton diversity during the wet season compared to the dry season. Additionally, distinct seasonal variations in bacterioplankton composition were observed, characterized by an increase in Cyanobacteria and Thermoplasmatota and a decrease in Proteobacteria and Bacteroidota during the wet season. Null model analysis revealed that stochastic processes governed bacterioplankton community assembly in the Beibu Gulf, with drift and homogenizing dispersal dominating during the dry and wet seasons, respectively. Enhanced deterministic assembly of bacterioplankton was also observed during the wet season. Redundancy and random forest model analyses identified the physical properties (e.g., temperature) and nutrient content (e.g., nitrate) of water as primary environmental drivers influencing bacterioplankton dynamics. Moreover, variation partitioning and distance-decay of similarity revealed that environmental filtering played a significant role in shaping bacterioplankton variations in this rapidly developed coastal ecosystem. These findings advance our understanding of bacterioplankton assembly in coastal ecosystems and establish a theoretical basis for effective ecological health management amidst ongoing global changes.


Asunto(s)
Plancton , Estaciones del Año , China , Bacterias/genética , Bacterias/clasificación , ARN Ribosómico 16S , Agua de Mar/microbiología , Agua de Mar/química
4.
Front Plant Sci ; 15: 1374431, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006956

RESUMEN

Plant-parasitic nematodes (PPNs) are among the most damaging pathogens to host plants. Plants can modulate their associated bacteria to cope with nematode infections. The tritrophic plant-nematode-microbe interactions are highly taxa-dependent, resulting in the effectiveness of nematode agents being variable among different host plants. Ficus tikoua is a versatile plant with high application potential for fruits or medicines. In recent years, a few farmers have attempted to cultivate this species in Sichuan, China, where parasitic nematodes are present. We used 16S rRNA genes to explore the effects of nematode parasitism on root-associated bacteria in this species. Our results revealed that nematode infection had effects on both endophytic bacterial communities and rhizosphere communities in F. tikoua roots, but on different levels. The species richness increased in the rhizosphere bacterial communities of infected individuals, but the community composition remained similar as compared with that of healthy individuals. Nematode infection induces a deterministic assembly process in the endophytic bacterial communities of parasitized organs. Significant taxonomic and functional changes were observed in the endophytic communities of root knots. These changes were characterized by the enrichment of nitrogen-fixing bacteria, including Bradyrhizobium, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and nematode-antagonistic bacteria, such as Pseudonocardia, Pseudomonas, Steroidobacter, Rhizobacter, and Ferrovibrio. Our results would help the understanding of the tritrophic plant-nematode-bacterium interactions in host plants other than dominant crops and vegetables and would provide essential information for successful nematode management when F. tikoua were cultivated on large scales.

5.
Sci Total Environ ; 947: 174559, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992373

RESUMEN

The distinctive environmental attributes of the Southern Ocean underscore the indispensability of microorganisms in this region. We analyzed 208 samples obtained from four separate layers (Surface, Deep Chlorophyll Maximum, Middle, and Bottom) in the neighboring seas of the Antarctic Peninsula and the Cosmonaut Sea to explore variations in microbial composition, interactions and community assembly processes. The results demonstrated noteworthy distinctions in alpha and beta diversity across diverse communities, with the increase in water depth, a gradual rise in community diversity was observed. In particular, the co-occurrence network analysis exposed pronounced microbial interactions within the same water mass, which are notably stronger than those observed between different water masses. Co-occurrence network complexity was higher in the surface water mass than in the bottom water mass. Yet, the surface water mass exhibited greater network stability. Moreover, in the phylogenetic-based ß-nearest taxon distance analyses, deterministic processes were identified as the primary factors influencing community assembly in Antarctic microorganisms. This study contributes to exploring diversity and assembly processes under the complex hydrological conditions of Antarctica.


Asunto(s)
Biodiversidad , Microbiota , Agua de Mar , Regiones Antárticas , Agua de Mar/microbiología , Filogenia , Monitoreo del Ambiente , Microbiología del Agua , Bacterias/clasificación
6.
Sci Total Environ ; 947: 174751, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004372

RESUMEN

Community assembly processes determine community structure. Deterministic processes are essential for optimizing activated sludge (AS) bioreactor performance. However, the debate regarding the relative importance of determinism versus stochasticity remains contentious, and the influencing factors are indistinct. This study used large-scale 16S rRNA gene data derived from 252 AS samples collected from 28 cities across China to explore the mechanism of AS community assembly. Results showed that the northern communities possessed lower spatial turnover and more significant dispersal limitation than those in the south, whereas the latter had more substantial deterministic processes than the former (14.46 % v.s. 9.12 %). Meanwhile, the communities in the south exhibited lower network complexity and stability. We utilized a structural equation model to explore the drivers of deterministic processes. Results revealed that low network complexity (r = -0.56, P < 0.05) and high quorum sensing bacteria abundance (r = 0.25, P < 0.001) promoted deterministic assembly, which clarifies why determinism was stronger in southern communities than northern ones. Furthermore, total phosphorus and hydraulic retention time were found to be the primary abiotic drivers. These findings provide evidence to understand the community deterministic assembly, which is crucial for resolving community structure and improving bioreactor performance.


Asunto(s)
Reactores Biológicos , Microbiota , Eliminación de Residuos Líquidos , Aguas Residuales , China , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Reactores Biológicos/microbiología , ARN Ribosómico 16S , Bacterias/clasificación , Bacterias/genética , Aguas del Alcantarillado/microbiología
7.
Ecol Evol ; 14(6): e11492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38932955

RESUMEN

Beta diversity patterns along environmental gradients and underlying mechanisms constitute key research inquiries in biogeography. However, ecological processes often also influence the functional traits of biological communities, making the assessment of functional ß-diversity crucial. Ground beetles (Coleoptera: Carabidae) are one of the most species-rich groups in the insect community, displaying strong habitat specificity and morphological differences. In this study, we explored the patterns of taxonomic and functional beta diversity in ground beetle communities along the altitudinal gradient of warm-temperature forests. By partitioning beta diversity into turnover and nestedness components, we evaluated their relationship with spatial distance. Our findings indicate a decline in species and functional trait similarity with increasing elevation and geographic distance. Further analysis attributed both types of beta diversity in carabids to a combination of dispersal limitation and environmental filtering, with elevation and geographic distance emerging as significant factors. Interestingly, forest-type variations were found to have no impact on the beta diversity of these communities. Our study reveals the impact of environmental filtering and dispersal limitation on both taxonomic and functional beta-diversity, shedding light on carabid community assembly in localized warm-temperature forest areas in eastern China.

8.
J Environ Manage ; 359: 121107, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728984

RESUMEN

Microbial induced concrete corrosion (MICC) is the primary deterioration affecting global sewers. Disentangling ecological mechanisms in the sewer system is meaningful for implementing policies to protect sewer pipes using trenchless technology. It is necessary to understand microbial compositions, interaction networks, functions, alongside assembly processes in sewer microbial communities. In this study, sewer wastewater samples and microbial samples from the upper part (UP), middle part (MP) and bottom part (BP) of different pipes were collected for 16S rRNA gene amplicon analysis. It was found that BP harbored distinct microbial communities and the largest proportion of unique species (1141) compared to UP and MP. The community in BP tended to be more clustered. Furthermore, significant differences in microbial functions existed in different spatial locations, including the carbon cycle, nitrogen cycle and sulfur cycle. Active microbial sulfur cycling indicated the corrosion risk of MICC. Among the environmental factors, the oxidation‒reduction potential drove changes in BP, while sulfate managed changes in UP and BP. Stochasticity dominated community assembly in the sewer system. Additionally, the sewer microbial community exhibited numerous positive links. BP possessed a more complex, modular network with higher modularity. These deep insights into microbial ecology in the sewer system may guide engineering safety and disaster prevention in sewer infrastructure.


Asunto(s)
Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , ARN Ribosómico 16S/genética , Aguas Residuales/microbiología , Ecología , Corrosión , Microbiota
9.
Sci Total Environ ; 934: 173298, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761945

RESUMEN

Rapid urbanization has precipitated significant anthropogenic pollution (nutrients and pathogens) in urban rivers and their receiving systems, which consequentially disrupted the compositions and assembly of bacterial community within these ecosystems. However, there remains scarce information regarding the composition and assembly of both planktonic and benthic bacterial communities as well as pathogen distribution in such environments. In this study, full-length 16S rRNA gene sequencing was conducted to investigate the bacterial community composition, interactions, and assembly processes as well as the distribution of potential pathogens along a riverine-coastal continuum in Shenzhen megacity, China. The results indicated that both riverine and coastal bacterial communities were predominantly composed of Gammaproteobacteria (24.8 ± 12.6 %), Alphaproteobacteria (16.1 ± 9.8 %), and Bacteroidota (14.3 ± 8.6 %), while sedimentary bacterial communities exhibited significantly higher diversity compared to their planktonic counterparts. Bacterial community patterns exhibited significant divergences across different habitats, and a significant distance-decay relationship of bacterial community similarity was particularly observed within the urban river ecosystem. Moreover, the urban river ecosystem displayed a more complex bacterial co-occurrence network than the coastal ecosystem, and a low ratio of negative:positive cohesion suggested the inherent instability of these networks. Homogeneous selection and dispersal limitation emerged as the predominant influences on planktonic and sedimentary bacterial communities, respectively. Pathogenic genera such as Vibrio, Bacteroides, and Acinetobacter, known for their roles in foodborne diseases or wound infection, were also identified. Collectively, these findings provided critical insights into bacterial community dynamics and their implications for ecosystem management and pathogen risk control in riverine and coastal environments impacted by rapid urbanization.


Asunto(s)
Bacterias , Ecosistema , Ríos , Urbanización , China , Ríos/microbiología , Bacterias/clasificación , Bacterias/genética , ARN Ribosómico 16S , Monitoreo del Ambiente , Microbiota , Ciudades , Microbiología del Agua
10.
Ecol Evol ; 14(4): e11234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646003

RESUMEN

Vibrio is a salt-tolerant heterotrophic bacterium that occupies an important ecological niche in marine environments. However, little is known about the contribution of resource diversity to the marine Vibrio diversity and community stability. In this study, we investigated the association among resource diversity, taxonomic diversity, phylogenetic diversity, and community stability of marine Vibrio in the Beibu Gulf. V. campbellii and V. hangzhouensis were the dominant groups in seawater and sediments, respectively, in the Beibu Gulf. Higher alpha diversity was observed in the sediments than in the seawater. Marine Vibrio community assembly was dominated by deterministic processes. Pearson's correlation analysis showed that nitrite (NO2--N), dissolved inorganic nitrogen (DIN), ammonium (NH4+-N), and pH were the main factors affecting marine Vibrio community stability in the surface, middle, and bottom layers of seawater and sediment, respectively. Partial least-squares path models (PLS-PM) demonstrated that resource diversity, water properties, nutrients, and geographical distance had important impacts on phylogenetic and taxonomic diversity. Regression analysis revealed that the impact of resource diversity on marine Vibrio diversity and community stability varied across different habitats, but loss of Vibrio diversity increases community stability. Overall, this study provided insights into the mechanisms underlying the maintenance of Vibrio diversity and community stability in marine environments.

11.
J Environ Manage ; 359: 121000, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669889

RESUMEN

Landfills are commonly used for waste disposal in many countries, and pose a significant threat of groundwater contamination. Dissolved organic matter (DOM) plays a crucial role as a carbon and energy source, supporting the growth and activity of microorganisms. However, the changes in the DOM signature and microbial community composition in landfill-affected groundwater and their bidirectional relationships remain inadequately explored. Herein, we showed that DOM originating from more recent landfills mainly comprises microbially produced substances resembling tryptophan and tyrosine. Conversely, DOM originating from older landfills predominantly comprises fulvic-like and humic-like compounds. Leachate leakage increases microbial diversity and richness and facilitates the transfer of foreign bacteria from landfills to groundwater, thereby increasing the vulnerability of the microbial ecosystem in groundwater. Deterministic processes dominated the assembly of the groundwater microbial community, while stochastic processes accounted for an increased proportion of the microbial community in the old landfills. The dominant phyla observed in groundwater were Proteobacteria, Bacteroidota, and Actinobacteriota, and humic-like substances play a crucial role in driving the variation in microbial communities in landfill-affected groundwater. Predictions using PICRUSt2 suggested significant associations between various metabolic pathways and microbial communities, with the Kyoto Encyclopedia of Genes and Genomes pathway "Metabolism" being the most predominant. The findings contribute to advancing our understanding of the transformation of DOM and its interplay with microbial communities and can serve as a scientific reference for decision-making regarding groundwater pollution monitoring and remediation.


Asunto(s)
Agua Subterránea , Sustancias Húmicas , Contaminantes Químicos del Agua , Agua Subterránea/microbiología , Agua Subterránea/química , Sustancias Húmicas/análisis , Contaminantes Químicos del Agua/análisis , Instalaciones de Eliminación de Residuos , Microbiota , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
12.
Environ Res ; 252(Pt 2): 118841, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582418

RESUMEN

The significant threat of antibiotic resistance genes (ARGs) to aquatic environments health has been widely acknowledged. To date, several studies have focused on the distribution and diversity of ARGs in a single river while their profiles in complex river networks are largely known. Here, the spatiotemporal dynamics of ARG profiles in a canal network were examined using high-throughput quantitative PCR, and the underlying assembly processes and its main environmental influencing factors were elucidated using multiple statistical analyses. The results demonstrated significant seasonal dynamics with greater richness and relative abundance of ARGs observed during the dry season compared to the wet season. ARG profiles exhibited a pronounced distance-decay pattern in the dry season, whereas no such pattern was evident in the wet season. Null model analysis indicated that deterministic processes, in contrast to stochastic processes, had a significant impact on shaping the ARG profiles. Furthermore, it was found that Firmicutes and pH emerged as the foremost factors influencing these profiles. This study enhanced our comprehension of the variations in ARG profiles within canal networks, which may contribute to the design of efficient management approaches aimed at restraining the propagation of ARGs.


Asunto(s)
Ríos , Estaciones del Año , Ríos/microbiología , Farmacorresistencia Microbiana/genética , Hidrología , Genes Bacterianos , Antibacterianos/farmacología
13.
Foods ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38672869

RESUMEN

Pit mud (PM), as an important source of microorganisms, is necessary for Chinese strong-flavor baijiu (CSFB) production. Although it has been revealed that the PM prokaryotic community diversities are influenced by its quality, product area, ages, etc., the characteristics and assembly process of the prokaryotic community in PMs across a pH gradient are still unclear. In this study, the regular changes of α- and ß-diversities of the prokaryotic community across a pH gradient in PMs were revealed, which could be divided into "stable", "relatively stable", and "drastically changed" periods. A total of 27 phyla, 53 classes, and 381 genera were observed in all given samples, dominated by Firmicutes, Bacteroidetes, Proteobacteria, Lactobacillus, Caproiciproducens, Proteiniphilum, etc. Meanwhile, the complexity of the network structure of the prokaryotic microbial communities is significantly influenced by pH. The community assembly was jointly shaped by deterministic and stochastic processes, with stochastic process contributing more. This study was a specialized report on elucidating the characteristics and assembly of PM prokaryotic communities across a pH gradient, and revealed that the diversity and structure of PM prokaryotic communities could be predictable, to some degree, which could contribute to expanding our understanding of prokaryotic communities in PM.

14.
Microorganisms ; 12(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38674733

RESUMEN

The gut microbiota in animals is a dynamic ecosystem influenced by both the host itself and the environment it inhabits. It is known that short-term captivity can significantly impact the gut microbiota of plateau zokors, leading to substantial inter-individual variation. However, the specific changes in the assembly process of the gut microbiota in plateau zokors during captivity remain unclear. In this study, we conducted a comparative analysis on the assembly process of the gut microbiota in 22 male plateau zokors from the same location in Qinglin Township, Datong County, Qinghai Province, before (W) and after (L) laboratory rearing. We performed a single-factor correlation network analysis on the top 50 genera with relative abundance in each group. The results revealed that captivity increased the complexity of the gut microbiota in plateau zokors, indicating a higher number of interactions between different microbial species. However, this increase in complexity was accompanied by a decrease in stability, suggesting a higher degree of variability and potential disruption in the microbial community. According to the results of the neutral community model, the gut microbiota of plateau zokors in the W had a higher Nm value (Nm = 48,135) compared to the L (Nm = 39,671), indicating that species dispersal of the gut microbiota was greater in the wild than in captivity. In the wild, the modified stochasticity ratio (MST) was less than 0.5, suggesting that deterministic processes dominated. However, after 15 days of laboratory rearing, the MST became greater than 0.5, indicating a shift toward stochastic processes, and this difference was highly significant (p < 0.001). This differs from research related to aboveground animals. This study provides theoretical support for the application of gut microbiota in subterranean endangered species.

15.
Bioact Mater ; 36: 62-82, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38440323

RESUMEN

Tendon-bone interface injuries pose a significant challenge in tissue regeneration, necessitating innovative approaches. Hydrogels with integrated supportive features and controlled release of therapeutic agents have emerged as promising candidates for the treatment of such injuries. In this study, we aimed to develop a temperature-sensitive composite hydrogel capable of providing sustained release of magnesium ions (Mg2+). We synthesized magnesium-Procyanidin coordinated metal polyphenol nanoparticles (Mg-PC) through a self-assembly process and integrated them into a two-component hydrogel. The hydrogel was composed of dopamine-modified hyaluronic acid (Dop-HA) and F127. To ensure controlled release and mitigate the "burst release" effect of Mg2+, we covalently crosslinked the Mg-PC nanoparticles through coordination bonds with the catechol moiety within the hydrogel. This crosslinking strategy extended the release window of Mg2+ concentrations for up to 56 days. The resulting hydrogel (Mg-PC@Dop-HA/F127) exhibited favorable properties, including injectability, thermosensitivity and shape adaptability, making it suitable for injection and adaptation to irregularly shaped supraspinatus implantation sites. Furthermore, the hydrogel sustained the release of Mg2+ and Procyanidins, which attracted mesenchymal stem and progenitor cells, alleviated inflammation, and promoted macrophage polarization towards the M2 phenotype. Additionally, it enhanced collagen synthesis and mineralization, facilitating the repair of the tendon-bone interface. By incorporating multilevel metal phenolic networks (MPN) to control ion release, these hybridized hydrogels can be customized for various biomedical applications.

16.
J Hazard Mater ; 468: 133845, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401217

RESUMEN

Biosolids are considered an alternative to chemical fertilizers due to their rich nutrients. However, long-term biosolids application can lead to heavy metals accumulation, which severely affects soil microbial community compositions. The factors influencing soil microbial community assembly were explored under a 16-year long-term experiment with biosolids applications. Our results indicated that biosolids application significantly increased fungal richness while not for bacterial and arbuscular mycorrhizal (AM) fungal richness. Besides, biosolids application significantly affected soil bacterial, fungal compositions and AM fungal community. Soil microorganisms were clustered into different modules with bacterial and AM fungal communities were affected by both organic matter and heavy metals, while fungal communities were affected by heavy metals (Cr, Ni, and As). The soil bacterial community assembly was dominated by stochastic processes while the fungal and AM fungal community assemblies were mainly driven by deterministic processes. Random forest analysis showed that heavy metals were identified as major drivers (Hg, Cu, Cd, and Zn for bacteria, Pb and Cr for fungi, and As and Ni for AM fungi) of the community assembly process. Overall, our study highlights the significant role of heavy metals in shaping microbial community dynamics and gives a guide for controlling biosolids application.


Asunto(s)
Metales Pesados , Microbiota , Micorrizas , Contaminantes del Suelo , Biosólidos , Granjas , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Suelo/química
17.
Mar Environ Res ; 196: 106414, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394975

RESUMEN

Estuaries, acting as transitional habitats receiving species introductions from both freshwater and marine sources, undergo significant impacts from global climate changes. Planktonic microorganisms contribute significantly to estuarine biodiversity and ecological stability. These microorganisms primarily fall into three groups: eukaryotic plankton, particle-associated bacteria, and free-living bacteria. Understanding the structural characteristics and interactions within these subcommunities is crucial for comprehending estuarine dynamics. We collected samples from three distinct locations (< 0.1 PSU, 6.6 PSU, and 19 PSU) within the Yangtze River estuary. Samples underwent analysis for physicochemical indicators, while microbial communities were subjected to 16S/18S rRNA amplicon sequencing. Additionally, simulated mixing experiments were conducted using samples of varying salinities. Estuary samples, combined with simulated experiments, were employed to collectively examine the structural characteristics and assembly processes of estuarine microbes. Our research highlights the considerable impact of phylogenetic classification on prokaryotic behavior in these communities. We observed a transition in assembly processes from primarily stochastic for particle-associated bacteria to a predominant influence of homogeneous selection as salinity increased. Particle-associated bacterial communities exhibited a greater influence of stochastic processes compared to free-living bacteria, showcasing higher stability in diversity. The variations in composition and structure of estuarine microbial subcommunities were influenced by diverse environmental factors. Particle-associated bacteria displayed elevated network characterization values and established closer interactions with eukaryotic plankton. Structural equation modeling (SEM) analysis revealed that free-living bacteria displayed a heightened sensitivity to environmental factors and exerted a more significant influence on assembly processes and network characteristics. Simulated mixing in these environments resulted in the loss of species with similar microbial taxonomic relationships. The functioning of bacterioplankton is influenced by salinity and the processes governing their assembly, particularly in relation to different living states. These findings significantly contribute to our understanding of the intricate interplay between prokaryotic and eukaryotic plankton microorganisms in highly dynamic environments, laying a robust foundation for further exploration into the ecological mechanisms governing microbial dynamics in estuaries.


Asunto(s)
Microbiota , Plancton , Ríos , Estuarios , Filogenia , Organismos Acuáticos , Bacterias/genética , Ecosistema
18.
Ecol Evol ; 14(2): e11062, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38389996

RESUMEN

Macroinvertebrates play a vital role in coastal ecosystems and are an important indicator of ecosystem quality. Both anthropogenic activity and environmental changes may lead to significant changes in the marine macroinvertebrate community. However, the assembly process of benthic biodiversity and its mechanism driven by environmental factors at large scales remains unclear. Here, using the benthic field survey data of 15 years at large spatial and temporal scales from the Yellow Sea Large Marine Ecosystem, we investigated the relative importance of environmental selection, dispersal processes, random-deterministic processes of macroinvertebrates community diversity assembly, and the responses of this relative importance driven by temperature and nutrients. Results showed that the macroinvertebrates community diversity is mainly affected by dispersal. Nitrogen and phosphorus are the most important negative factors among environmental variables, while geographical distance is the main limiting factor of ß diversity. Within the range of 0.35-0.70 mg/L of nutrients, increasing nutrient concentration can significantly facilitate the contribution of the decay effect to ß diversity. Within the temperature range studied (15.0-18.0°C), both warming and cooling can lead to a greater tendency for species diversity assembly processes to be dominated by deterministic processes. The analysis contributes to a better understanding of the assembly process of the diversity of coastal marine macroinvertebrates communities and how they adapt to global biogeochemical processes.

19.
Sci Total Environ ; 917: 170386, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38280613

RESUMEN

Unraveling the drivers controlling the assembly and stability of functional communities is a central issue in ecology. Despite extensive research and data, relatively little attention has been paid on the importance of biotic factors and, in particular, on the trophic interaction for explaining the assembly of microbial community. Here, we examined the diversity, assembly, and stability of nirS-, nirK-, and nosZ-type denitrifying bacterial communities in copper-tailings drainages of the Shibahe tailings reservoir in Zhongtiao Mountain, China's. We found that components of nirS-, nirK-, and nosZ-type denitrifying bacterial community diversity, such as taxon relative abundance, richness, and copy number, were strongly correlated with protist community composition and diversity. Assembly of the nirK-type denitrifying bacterial community was governed by dispersal limitation, whereas those of nirS- and nosZ-type communities were controlled by homogeneous selection. The relative importance of protist diversity in the assembly of nirK- and nosZ-type denitrifying bacterial communities was greater than that in nirS-type assembly. In addition, protists reduced the stability of the co-occurrence network of the nosZ-type denitrifying bacterial community. Compared with eukaryotic algae, protozoa had a greater impact on the stability of denitrifying bacterial community co-occurrence networks. Generally, protists affected the assembly and community stability of denitrifying bacteria in copper-tailings drainages. Our findings thus emphasize the importance of protists on affecting the assembly and community stability of denitrifying bacteria in copper-tailings drainages and may be useful for predicting changes in the ecological functions of microorganisms.


Asunto(s)
Cobre , Microbiología del Suelo , Bacterias , Desnitrificación , Suelo
20.
ACS Biomater Sci Eng ; 10(2): 863-874, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38240580

RESUMEN

The exploration of short peptide-based assembly is vital for understanding protein-misfolding-associated diseases and seeking strategies to attenuate aggregate formation. While, the molecular mechanism of their structural evolution remains poorly studied in view of the dynamic and unpredictable assembly process. Herein, infrared (IR) spectroscopy, which serves as an in situ and real-time analytical technique, was intelligently employed to investigate the mechanism of phase transition and aggregate formation during the dynamic assembly process of diphenylalanine. Combined with other spectroscopy and electron microscopy technologies, three stages of gel formation and the main driving forces in different stages were revealed. A variety of stoichiometric methods such as continuous wavelet transform, principal component analysis, and two-dimensional correlation spectroscopy techniques were conducted to analyze the original time-dependent IR spectra to obtain detailed information on the changes in the amide bands and hydration layer. The microenvironment of hydrogen bonding among amide bands was significantly changed with the addition of pyridine derivatives, resulting in great differences in the properties of co-assembled gels. This work not only provides a universal analytical way to reveal the dynamic assembly process of dipeptide-based supramolecular gel but also expands their applications in supramolecular regulation and high-throughput screens in situ.


Asunto(s)
Dipéptidos , Péptidos , Dipéptidos/química , Péptidos/química , Geles/química , Espectrofotometría Infrarroja , Amidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA