Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38990437

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIONs) are extensively used as carriers in targeted drug delivery and has several advantages in the field of magnetic hyperthermia, chemodynamic therapy and magnet assisted radionuclide therapy. The characteristics of SPIONs can be tailored to deliver drugs into tumor via "passive targeting" and they can also be coated with tissue-specific agents to enhance tumor uptake via "active targeting". In our earlier studies, we developed HCC specific targeting agent- "phosphorylated galactosylated chitosan"(PGC) for targeting asialoglycoprotein receptors. Considering their encouraging results, in this study we developed a multifunctional targeting system- "phosphorylated galactosylated chitosan-coated magnetic nanoparticles"(PGCMNPs) for targeting HCC. PGCMNPs were synthesized by co-precipitation method and characterized by DLS, XRD, TEM, VSM, elemental analysis and FT-IR spectroscopy. PGCMNPs were evaluated for in vitro antioxidant properties, uptake in HepG2 cells, biodistribution, in vivo toxicity and were also evaluated for anticancer therapeutic potential against NDEA-induced HCC in mice model in terms of tumor status, electrical properties, antioxidant defense status and apoptosis. The characterization studies confirmed successful formation of PGCMNPs with superparamagnetic properties. The internalization studies demonstrated (99-100)% uptake of PGCMNPs in HepG2 cells. These results were also supported by biodistribution studies in which increased iron content (296%) was noted inside the hepatocytes. Further, PGCMNPs exhibited no in vivo toxicity. The anticancer therapeutic potential was evident from observation that PGCMNPs treatment decreased tumor bearing animals (41.6%) and significantly (p ≤ 0.05) lowered tumor multiplicity. Overall, this study indicated that PGCMNPs with improved properties are efficiently taken-up by hepatoma cells and has therapeutic potential against HCC. Further, this agent can be tagged with 32P and hence can offer multimodal cancer treatment options via radiation ablation as well as magnetic hyperthermia.

2.
Front Immunol ; 15: 1402250, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855107

RESUMEN

Background: This study aimed to employ plasma proteomics to investigate the molecular changes, pathway alterations, and potential novel biochemical markers associated with balloon pulmonary angioplasty (BPA) in patients with chronic thromboembolic pulmonary hypertension (CTEPH). Methods: Pre- and post-BPA plasma samples from five CTEPH patients in the PRACTICE study were analyzed to identify differentially expressed proteins. Proteomic and bioinformatics analyses were conducted, and the identified proteins were further validated using ELISA assays in a separate cohort of the same study. Correlation and multivariate regression analyses were performed to investigate the associations between these differentially expressed proteins and clinical parameters. Results: Significantly higher serum levels of asialoglycoprotein receptor 2 (ASGR2) were detected in 5 CTEPH patients compared to those in healthy individuals but decreased significantly after successful BPA procedures. The decrease in serum levels of ASGR2 after the completion of BPA procedures was further validated in a separate cohort of 48 patients with CTEPH [0.70 (0.51, 1.11) ng/mL vs. 0.38 (0.27, 0.59) ng/mL, P < 0.001]. Significant associations were found between the pre-BPA ASGR2 level and clinical parameters, including neutrophil percentage (R = 0.285, P < 0.05), platelet (PLT) count (R = 0.386, P < 0.05), and high-density lipoprotein cholesterol (HDL-C) before BPA (R = -0.285, P < 0.05). Significant associations were detected between post-BPA serum ASGR2 levels and lymphocyte percentage (LYM%) (R = 0.306, P < 0.05), neutrophil-to-lymphocyte ratio (R = -0.294, P < 0.05), and pulmonary vascular resistance after BPA (R = -0.35, P < 0.05). Multivariate stepwise regression analysis revealed that pre-BPA ASGR2 levels were associated with HDL-C and PLT count (both P < 0.001), while post-BPA ASGR2 levels were associated with LYM% (P < 0.05). Conclusion: Serum levels of ASGR2 may be a biomarker for the effectiveness of BPA treatment in CTEPH patients. The pre-BPA serum level of ASGR2 in CTEPH patients was associated with HDL-C and the PLT count. The post-BPA serum level of ASGR2 was correlated with the LYM%, which may reflect aspects of immune and inflammatory status.


Asunto(s)
Angioplastia de Balón , Biomarcadores , Hipertensión Pulmonar , Embolia Pulmonar , Humanos , Masculino , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/terapia , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Embolia Pulmonar/sangre , Embolia Pulmonar/terapia , Anciano , Proteómica/métodos , Enfermedad Crónica
3.
EJNMMI Radiopharm Chem ; 9(1): 41, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750246

RESUMEN

BACKGROUND: Determination of the functional liver mass is important in a variety of clinical settings including liver surgery and transplantation. [99mTc]Tc-diethylenetriamine-pentaacetic acid galactosyl human serum albumin (99mTc-GSA) is a radiotracer targeting the asialoglycoprotein receptor (ASGR) and is routinely used in Japan for this purpose. Here we describe the development and evaluation of [68Ga]Ga-NODAGA-TriGalactan a low molecular weight PET-tracer targeting this structure. RESULTS: For synthesis TRIS as branching unit and NODAGA as chelator for labelling with [68Ga]Ga are included. Three galactose moieties are conjugated via a click chemistry approach resulting in the desired labelling precursor.68Ga-labelling could be accomplished in high radiochemical yield and purity. [68Ga]Ga-NODAGA-TriGalactan is very hydrophilic and revealed high plasma stability and low plasma protein binding. Fluorescence imaging showed binding on ASGR-positive organoids and the IC50-value was in the nanomolar range. Most importantly, both biodistribution as well as animal imaging studies using normal mice demonstrated high liver uptake with rapid elimination from all other organs leading to even higher liver-to-background ratios as found for 99mTc-GSA. CONCLUSION: [68Ga]Ga-NODAGA-TriGalactan shows high in vitro stability and selectively binds to the ASGR allowing imaging of the functional liver mass with high contrast. Thus, our first generation compound resulted already in an alternative to 99mTc-GSA for imaging the functional liver reserve and might allow the broader use of this imaging technique.

4.
Lipids Health Dis ; 23(1): 89, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539180

RESUMEN

BACKGROUND AND AIMS: Current research has suggested that asialoglycoprotein receptor 1 (ASGR1) is involved in cholesterol metabolism and is also related to systemic inflammation. This study aimed to assess the correlation between the serum soluble ASGR1 (sASGR1) concentration and inflammatory marker levels. Moreover, the second objective of the study was to assess the association between sASGR1 levels and the presence of coronary artery disease (CAD). METHODS: The study subjects included 160 patients who underwent coronary angiography. Ninety patients were diagnosed with CAD, while seventy age- and sex-matched non-CAD patients served as controls. We measured the serum sASGR1 levels using an ELISA kit after collecting clinical baseline characteristics. RESULTS: Patients with CAD had higher serum sASGR1 levels than non-CAD patients did (P < 0.0001). sASGR1 was independently correlated with the risk of CAD after adjusting for confounding variables (OR = 1.522, P = 0.012). The receiver operating characteristic (ROC) curve showed that sASGR1 had a larger area under the curve (AUC) than did the conventional biomarkers apolipoprotein B (APO-B) and low-density lipoprotein cholesterol (LDL-C). In addition, multivariate linear regression models revealed that sASGR1 is independently and positively correlated with high-sensitivity C-reactive protein (CRP) (ß = 0.86, P < 0.001) and WBC (ß = 0.13, P = 0.004) counts even after adjusting for lipid parameters. According to our subgroup analysis, this relationship existed only for CAD patients. CONCLUSION: Our research demonstrated the link between CAD and sASGR1 levels, suggesting that sASGR1 may be an independent risk factor for CAD. In addition, this study provides a reference for revealing the potential role of sASGR1 in the inflammation of atherosclerosis.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Angiografía Coronaria/efectos adversos , Factores de Riesgo , Biomarcadores , Inflamación/complicaciones , Colesterol , Receptor de Asialoglicoproteína
5.
Pharmaceutics ; 16(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38543217

RESUMEN

Most antiviral and anticancer nucleosides are prodrugs that require stepwise phosphorylation to their triphosphate nucleotide form for biological activity. Monophosphorylation may be rate-limiting, and the nucleotides may be unstable and poorly internalized by target cells. Effective targeting and delivery systems for nucleoside drugs, including oligonucleotides used in molecular therapeutics, could augment their efficacy. The development of a carrier designed to effect selective transmembrane internalization of nucleotides via the asialoglycoprotein receptor (ASGPr) is now reported. In this work, the polycationic, polygalactosyl drug delivery carrier heptakis[6-amino-6-deoxy-2-O-(3-(1-thio-ß-D-galactopyranosyl)-propyl)]-ß-cyclodextrin hepta-acetate salt (GCyDAc), potentially a bifunctional carrier of (poly)nucleotides, was modeled by molecular docking in silico as an ASGPr-ligand, then synthesized for testing. The antivirals arabinosyl adenine (araA, vidarabine, an early generation antiviral nucleoside), arabinosyl adenine 5'-monophosphate (araAMP), and 12-mer-araAMP (p-araAMP) were selected for individual formulation with GCyDAc to develop this concept. Experimentally, beta cyclodextrin was decorated with seven protonated amino substituents on the primary face, and seven thiogalactose residues on its secondary face. AraA, araAMP, and p-araAMP were individually complexed with GCyDAc and complex formation for each drug was confirmed by differential scanning calorimetry (DSC). Finally, the free drugs and their GCyDAc complexes were evaluated for antiviral activity using ASGPr-expressing HepAD38 cells in cell culture. In this model, araA, araAMP, and p-araAMP showed relative antiviral potencies of 1.0, 1.1, and 1.2, respectively. In comparison, GCyDAc-complexes of araA, araAMP, and p-araAMP were 2.5, 1.3, and 1.2 times more effective than non-complexed araA in suppressing viral DNA production. The antiviral potencies of these complexes were minimally supportive of the hypothesis that ASGPr-targeted, CyD-based charge-association complexation of nucleosides and nucleotides could effectively enhance antiviral efficacy. GCyDAc was non-toxic to mammalian cells in cell culture, as determined using the MTS proliferation assay.

6.
Eur J Med Chem ; 267: 116183, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38354520

RESUMEN

Triggering ferroptosis is a potential therapeutic pathway and strategy for the prospective treatment of lethal hepatocellular carcinoma (HCC). The asialo-glycoprotein receptor (ASGPR) is an over-expressed receptor on the membranes of hepatocellular carcinoma cells (HCCs) and binds specifically to galactose (Gal) ligand. Celastrol (CE) is a potent anticancer natural product, but its poor water solubility and severe toxicity restrict its clinical application. In this study, a carrier-free self-assembled nanoparticles, CE-Gal-NPs, were designed and prepared by nanoprecipitation method, which could recognize ASGPR receptor by active targeting (Gal ligand) and passive targeting (EPR effect), access to the cell through the clathrin pathway and finally internalize to lysosomes. CE-Gal-NPs triggered reactive oxygen species (ROS)-mediated ferroptosis pathway and exerted anti-HCC effects in vitro and in vivo by down-regulating GPX4 and up-regulating COX-2 expression, depleting glutathione (GSH) levels, and increasing lipid peroxidation levels in cells and tumor tissues. In the H22 xenograft mouse model, the CE-Gal-NPs group exhibited dramatically superior tumor inhibition than the CE group, while Gal conjugating diminished the systemic toxicity of CE. Consequently, this study presented a promising strategy for CE potentiation and toxicity reduction, as well as a potential guideline for the development of clinically targeted therapeutic agents for HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Triterpenos Pentacíclicos , Humanos , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Galactosa , Nanomedicina , Ligandos , Células Hep G2
7.
Diabetes Metab J ; 48(4): 802-815, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38310881

RESUMEN

BACKGRUOUND: Insulin resistance (IR) is the key pathological basis of many metabolic disorders. Lack of asialoglycoprotein receptor 1 (ASGR1) decreased the serum lipid levels and reduced the risk of coronary artery disease. However, whether ASGR1 also participates in the regulatory network of insulin sensitivity and glucose metabolism remains unknown. METHODS: The constructed ASGR1 knockout mice and ASGR1-/- HepG2 cell lines were used to establish the animal model of metabolic syndrome and the IR cell model by high-fat diet (HFD) or drug induction, respectively. Then we evaluated the glucose metabolism and insulin signaling in vivo and in vitro. RESULTS: ASGR1 deficiency ameliorated systemic IR in mice fed with HFD, evidenced by improved insulin intolerance, serum insulin, and homeostasis model assessment of IR index, mainly contributed from increased insulin signaling in the liver, but not in muscle or adipose tissues. Meanwhile, the insulin signal transduction was significantly enhanced in ASGR1-/- HepG2 cells. By transcriptome analyses and comparison, those differentially expressed genes between ASGR1 null and wild type were enriched in the insulin signal pathway, particularly in phosphoinositide 3-kinase-AKT signaling. Notably, ASGR1 deficiency significantly reduced hepatic gluconeogenesis and glycogenolysis. CONCLUSION: The ASGR1 deficiency was consequentially linked with improved hepatic insulin sensitivity under metabolic stress, hepatic IR was the core factor of systemic IR, and overcoming hepatic IR significantly relieved the systemic IR. It suggests that ASGR1 is a potential intervention target for improving systemic IR in metabolic disorders.


Asunto(s)
Receptor de Asialoglicoproteína , Dieta Alta en Grasa , Resistencia a la Insulina , Hígado , Ratones Noqueados , Transducción de Señal , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Humanos , Células Hep G2 , Hígado/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Masculino , Insulina/sangre , Insulina/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Síndrome Metabólico/metabolismo , Síndrome Metabólico/etiología , Gluconeogénesis
8.
Int J Pharm ; 649: 123635, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000649

RESUMEN

Asialoglycoprotein receptors (ASGPRs) are highly expressed on hepatocytes and have been used for liver-targeted delivery and hepatocellular carcinoma (HCC) therapy. However, targeted delivery of bortezomib (BTZ) to HCC has not been reported. In this study, N-stearyl lactobionamide (N-SALB) with galactose (Gal) moiety was synthesized as a targeting agent and its structure was confirmed by FT-IR and NMR analyses. N-SALB surface-modified solid lipid nanoparticles (SLNs) loaded with BTZ (Gal-SLNs/BTZ) were developed to target BTZ delivery into HCC cancer cells. The Gal-SLNs/BTZ had an average particle size of 116.3 nm, polydispersity index (PDI) of 0.210, and zeta potential of -13.8 mV. TEM analysis showed their nanometer-sized spherical morphology. The encapsulation efficiency (EE) and drug loading (DL) capacity were 84.5 % and 1.16 %, respectively. Release studies showed that BTZ loaded inside the SLNs was slowly released over a period of 72 h at pH 7.4. Flow cytometry analysis showed significantly higher intracellular uptake of N-SALB-targeted nanoparticles than non-targeted nanoparticles in HepG2 cells. All lipid formulations showed good biocompatibility in the cytotoxicity study using MTT assay. Concentration-dependent cytotoxicity was observed for all formulations, with N-SALB-targeted nanoparticles demonstrating more cytotoxicity against HepG2 cells. The highest percentage of apoptosis was obtained for N-SALB-targeted nanoparticles compared to non-targeted nanoparticles (42.2 % and 8.70 %, respectively). Finally, biodistribution studies in HepG2 bearing nude mice showed that the accumulation of targeted nanoparticles in the tumor was significantly higher than non-targeted nanoparticles.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Ratones , Animales , Bortezomib , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Ratones Desnudos , Distribución Tisular , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Tamaño de la Partícula , Portadores de Fármacos/uso terapéutico
9.
Nanomedicine (Lond) ; 18(25): 1855-1873, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37991168

RESUMEN

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, typically diagnosed in advanced stages. Chemotherapy is necessary for treating advanced liver cancer; however, several challenges affect its effectiveness. These challenges include low specificity, high dosage requirements, high systemic toxicity and severe side effects, which significantly limit the efficacy of chemotherapy. These limitations can hinder the treatment of HCC. This review focuses on the prevalence of HCC, different types of liver cancer and the staging of the disease, along with available treatment methods. Additionally, explores recent and relevant studies on smart drug- and gene-delivery systems specifically designed for HCC. These systems include targeted endogenous and exogenous stimuli-responsive platforms.


Liver cancer is the third leading cause of cancer deaths in the world that is usually diagnosed in the last stages. Chemotherapy is commonly used to treat advanced liver cancer, but it faces several challenges that reduce its effectiveness. These challenges include low specificity (not targeting cancer cells specifically), high dosage requirements and side effects that can affect anywhere in the body. As a result, the efficacy of chemotherapy is significantly limited, making it difficult to treat liver cancer. This review discusses the prevalence of liver cancer, different types of liver cancer and how the disease is staged. It also explores various treatment methods available for liver cancer. Furthermore, the article explores recent and relevant studies on smart drug- and gene-delivery systems that are specifically designed to target liver cancer. These systems include platforms that respond to targeted and internal or external stimuli. They aim to improve the effectiveness of treatment for liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Terapia Molecular Dirigida , Técnicas de Transferencia de Gen
10.
J Mol Graph Model ; 125: 108614, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37651861

RESUMEN

Hypercholesterolemia is a significant risk factor for atherosclerotic cardiovascular disease (ASCVD). Successful management of cholesterol metabolism disorders can prevent these ASCVD effectively. Asialoglycoprotein receptor 1 (ASGR1) is the main subtype of sialoglycoprotein receptor, which is specifically expressed in the liver and mediates the endocytosis of blood asialoglycoprotein to lysosome degradation. Recently, ASGR1 has been reported as a new therapeutic target for the treatment of hypercholesterolemia. In this study, the main aim was to identify natural ASGR1 inhibitors from plant food chemicals library through pharmacophore and docking based virtual screening. Total 14 phytochemicals of potential ASGR1 inhibitors were identified, which presented docking affinity higher than control compound through docking based virtual screening. The docking pose showed the top three hits interacted residues were located at active pocket of ASGR1 with hydrogen bonds, hydrophobic interactions and electrostatic interactions. The top three hits (ZINC85664954, ZINC169372863, and ZINC195764535) were then subjected to 200 ns molecular dynamics simulation to evaluate the stability of docked complexes. These results showed that selected phytochemicals bound to ASGR1 with higher stability than control compound. Binding free energy of each docked complex was calculated by the Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) method. The binding free energy of ZINC85664954, ZINC169372863, ZINC195764535, and control-ASGR1 docked complexes were -18.359, -13.303, -14.389, and -6.229 kcal/mol, respectively. This indicated that selected hits bound to ASGR1 with higher affinity than control compound. Network pharmacology analysis shows that these phytochemicals have obvious multiple-effects and can regulate various biochemical pathways related to hypercholesterolemia. Besides, selected phytochemicals have suitable pharmacokinetics properties, suggesting that these compounds may be potential drug candidates. This study may be contributed to rational design of novel ASGR1 inhibitors for treatment of hypercholesterolemia.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Humanos , Hipercolesterolemia/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Receptor de Asialoglicoproteína , Farmacóforo , Simulación de Dinámica Molecular
11.
Mol Pharm ; 20(9): 4758-4769, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37585079

RESUMEN

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide. Telmisartan (TLM), a BSC class II drug, has been reported to have antiproliferative activity in HCC. However, its therapeutic activity is limited by poor bioavailability and unpredictable distribution. This work aimed to enhance TLM's liver uptake for HCC management through passive and active targeting pathways utilizing chitosan nanoparticles decorated with lactose (LCH NPs) as a delivery system. In vitro cell cytotoxicity and cellular uptake studies indicated that TLM-LCH NPs significantly (p < 0.05) enhanced the antiproliferative activity and cellular uptake percentage of TLM. In vivo bioavailability and liver biodistribution studies indicated that TLM-LCH NPs significantly (p < 0.05) enhanced TLM concentrations in plasma and the liver. The relative liver uptake of TLM from TLM-LCH NPs was 2-fold higher than that of unmodified NPs and 5-fold higher than that of plain TLM suspension. In vivo studies of a N-nitrosodiethylamine-induced HCC model revealed that administration of TLM through LCH NPs improved liver histology and resulted in lower serum alpha-fetoprotein (AFP), matrix metalloproteinase 2 (MMP-2), vascular endothelial growth factor (VEGF) levels, and liver weight index compared to plain TLM and TLM-loaded unmodified NPs. These results reflected the high potentiality of LCH NPs as a liver-targeted delivery system for TLM in the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Quitosano , Neoplasias Hepáticas , Nanopartículas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Telmisartán/uso terapéutico , Quitosano/metabolismo , Dietilnitrosamina , Metaloproteinasa 2 de la Matriz/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Distribución Tisular , Células Hep G2
12.
Mol Cell Proteomics ; 22(9): 100615, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37414249

RESUMEN

The asialoglycoprotein receptor (ASGPR) and the mannose receptor C-type 1 (MRC1) are well known for their selective recognition and clearance of circulating glycoproteins. Terminal galactose and N-Acetylgalactosamine are recognized by ASGPR, while terminal mannose, fucose, and N-Acetylglucosamine are recognized by MRC1. The effects of ASGPR and MRC1 deficiency on the N-glycosylation of individual circulating proteins have been studied. However, the impact on the homeostasis of the major plasma glycoproteins is debated and their glycosylation has not been mapped with high molecular resolution in this context. Therefore, we evaluated the total plasma N-glycome and plasma proteome of ASGR1 and MRC1 deficient mice. ASGPR deficiency resulted in an increase in O-acetylation of sialic acids accompanied by higher levels of apolipoprotein D, haptoglobin, and vitronectin. MRC1 deficiency decreased fucosylation without affecting the abundance of the major circulating glycoproteins. Our findings confirm that concentrations and N-glycosylation of the major plasma proteins are tightly controlled and further suggest that glycan-binding receptors have redundancy, allowing compensation for the loss of one major clearance receptor.


Asunto(s)
Glicoproteínas , Receptor de Manosa , Ratones , Animales , Receptor de Asialoglicoproteína/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Procesamiento Proteico-Postraduccional , Proteínas Portadoras/metabolismo , Manosa
13.
Metabolism ; 145: 155610, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37277061

RESUMEN

OBJECTIVE: Cholesterol gallstone disease (CGD) is closely related to cholesterol metabolic disorder. Glutaredoxin-1 (Glrx1) and Glrx1-related protein S-glutathionylation are increasingly being observed to drive various physiological and pathological processes, especially in metabolic diseases such as diabetes, obesity and fatty liver. However, Glrx1 has been minimally explored in cholesterol metabolism and gallstone disease. METHODS: We first investigated whether Glrx1 plays a role in gallstone formation in lithogenic diet-fed mice using immunoblotting and quantitative real-time PCR. Then a whole-body Glrx1-deficient (Glrx1-/-) mice and hepatic-specific Glrx1-overexpressing (AAV8-TBG-Glrx1) mice were generated, in which we analyzed the effects of Glrx1 on lipid metabolism upon LGD feeding. Quantitative proteomic analysis and immunoprecipitation (IP) of glutathionylated proteins were performed. RESULTS: We found that protein S-glutathionylation was markedly decreased and the deglutathionylating enzyme Glrx1 was greatly increased in the liver of lithogenic diet-fed mice. Glrx1-/- mice were protected from gallstone disease induced by a lithogenic diet because their biliary cholesterol and cholesterol saturation index (CSI) were reduced. Conversely, AAV8-TBG-Glrx1 mice showed greater gallstone progression with increased cholesterol secretion and CSI. Further studies showed that Glrx1-overexpressing greatly altered bile acid levels and/or composition to increase intestinal cholesterol absorption by upregulating Cyp8b1. In addition, liquid chromatography-mass spectrometry and IP analysis revealed that Glrx1 also affected the function of asialoglycoprotein receptor 1 (ASGR1) by mediating its deglutathionylation, thereby altering the expression of LXRα and controlling cholesterol secretion. CONCLUSION: Our findings present novel roles of Glrx1 and Glrx1-regulated protein S-glutathionylation in gallstone formation through the targeting of cholesterol metabolism. Our data advises Glrx1 significantly increased gallstone formation by simultaneously increase bile-acid-dependent cholesterol absorption and ASGR1- LXRα-dependent cholesterol efflux. Our work suggests the potential effects of inhibiting Glrx1 activity to treat cholelithiasis.


Asunto(s)
Cálculos Biliares , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Cálculos Biliares/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutarredoxinas/farmacología , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Ratones Endogámicos C57BL , Proteína S/metabolismo , Proteína S/farmacología , Proteómica
14.
Int J Pharm ; 637: 122865, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-36940837

RESUMEN

The chemosensitization of tumor cells by gene therapy represents a promising strategy for hepatocellular carcinoma (HCC) treatment. In this regard, HCC-specific and highly efficient gene delivery nanocarriers are urgently needed. For this purpose, novel lactobionic acid-based gene delivery nanosystems were developed to downregulate c-MYC expression and sensitize tumor cells to low concentration of sorafenib (SF). A library of tailor-made cationic glycopolymers, based on poly(2-aminoethyl methacrylate hydrochloride) (PAMA) and poly(2-lactobionamidoethyl methacrylate) (PLAMA) were synthesized by a straightforward activators regenerated by electron transfer atom transfer radical polymerization. The nanocarriers prepared with PAMA114-co-PLAMA20 glycopolymer were the most efficient for gene delivery. These glycoplexes specifically bound to the asialoglycoprotein receptor and were internalized through the clathrin-coated pit endocytic pathway. c-MYC expression was significantly downregulated by MYC short-hairpin RNA (MYC shRNA), resulting in efficient inhibition of tumor cells proliferation and a high levels apoptosis in 2D and 3D HCC-tumor models. Moreover, c-MYC silencing increased the sensitivity of HCC cells to SF (IC50 for MYC shRNA + SF 1.9 µM compared to 6.9 µM for control shRNA + SF). Overall, the data obtained demonstrated the great potential of PAMA114-co-PLAMA20/MYC shRNA nanosystems combined with low doses of SF for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/metabolismo , ARN Interferente Pequeño/genética , Sorafenib
15.
Adv Healthc Mater ; 12(12): e2202859, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36636995

RESUMEN

Peptide nucleic acids (PNAs) are used/applied in various studies to target genomic DNA and RNA to modulate gene expression. Non-specific targeting and rapid elimination always remain a challenge for PNA-based applications. Here, the synthesis, characterization, in vitro and in vivo study of di lactobionic acid (diLBA) and tris N-acetyl galactosamine (tGalNAc) conjugated PNAs for liver-targeted delivery are reported. For proof of concept, diLBA, and tGalNAc conjugated PNAs (anti-miR-122 PNAs) were synthesized to target microRNA-122 (miR-122) which is over-expressed in the hepatic tissue. Different lengths of anti-miR-122 PNAs conjugated with diLBA and tGalNAc are tested. Cell culture and in vivo analyses to determine biodistribution, efficacy, and toxicity profile are performed. This work indicates that diLBA conjugates show significant retention in hepatocytes in addition to tGalNAc conjugates after in vivo delivery. Full-length PNA conjugates show significant downregulation of miR-122 levels and subsequent de-repression of its downstream targets with no evidence of toxicity. The results provide a robust framework for ligand-conjugated delivery systems for PNAs that can be explored for broader biomedical applications.


Asunto(s)
Ácidos Nucleicos de Péptidos , Ácidos Nucleicos de Péptidos/farmacología , Ácidos Nucleicos de Péptidos/química , Acetilgalactosamina/metabolismo , Distribución Tisular , Antagomirs/metabolismo , Hepatocitos/metabolismo
16.
Cell Chem Biol ; 30(1): 97-109.e9, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36626903

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting the degradation of hepatic LDL receptors (LDLRs). Current therapeutic approaches use antibodies that disrupt PCSK9 binding to LDLR to reduce circulating LDL-C concentrations or siRNA that reduces PCSK9 synthesis and thereby levels in circulation. Recent reports describe small molecules that, like therapeutic antibodies, interfere with PCSK9 binding to LDLR. We report an alternative approach to decrease circulating PCSK9 levels by accelerating PCSK9 clearance and degradation using heterobifunctional molecules that simultaneously bind to PCSK9 and the asialoglycoprotein receptor (ASGPR). Various formats, including bispecific antibodies, antibody-small molecule conjugates, and heterobifunctional small molecules, demonstrate binding in vitro and accelerated PCSK9 clearance in vivo. These molecules showcase a new approach to PCSK9 inhibition, targeted plasma protein degradation (TPPD), and demonstrate the feasibility of heterobifunctional small molecule ligands to accelerate the clearance and degradation of pathogenic proteins in circulation.


Asunto(s)
Proproteína Convertasa 9 , Serina Endopeptidasas , Proproteína Convertasa 9/metabolismo , Receptor de Asialoglicoproteína , Serina Endopeptidasas/metabolismo , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , LDL-Colesterol , Ligandos
17.
Acupunct Med ; 41(4): 215-223, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36263700

RESUMEN

OBJECTIVE: Acupuncture can improve the symptoms of alcohol-induced bodily injury and has been accepted by the World Health Organization. In this study, in vivo fluorescence imaging (IVFI) was applied to display and evaluate the effect of electroacupuncture (EA) on liver function (LF) in mice with chronic alcoholic liver injury (cALI). METHODS: IVFI of the Cy5.5-galactosylated polylysine (Cy5.5-GP) probe targeting the liver asialoglycoprotein receptor (ASGPR) and liver indocyanine green (ICG) clearance was performed to visually evaluate the effect of EA at ST36 and BL18 on liver reserve function and hepatic metabolism in mice with cALI. In addition, changes in ASGPR expression, serum indexes of LF, and hepatic morphology were observed. RESULTS: After EA at ST36 and BL18, the ASGPR-targeted fluorescence signals (FS) in the liver increased significantly in cALI mice (p < 0.05) and exhibited relationships with liver ASGPR expression, liver ICG clearance, liver histology, and serum marker levels of LF in cALI mice undergoing EA intervention. CONCLUSIONS: As displayed by IVFI, EA at ST36 and BL18 appears to improve liver reserve function and inhibit the development of liver injury in mice with cALI. EA may have potential as a treatment strategy to protect against ALI.


Asunto(s)
Electroacupuntura , Ratones , Animales , Puntos de Acupuntura , Hígado/diagnóstico por imagen , Hígado/metabolismo , Imagen Óptica
18.
Int J Pharm ; 631: 122536, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36572262

RESUMEN

Nature serves as a priceless source for phytomedicines to treat different types of cancer, including hepatocellular carcinoma (HCC). Apocynin (APO), an anti-cancer phytomedicine, is a particular nicotinamide adenine dinucleotide phosphate-oxidase (NADPH-oxidase) inhibitor, which has recently dawned for its multilateral pharmacological activities. As far as we are aware, no investigation has been carried out yet to develop a targeted-nanostructured delivery system of APO to HCC. Consequently, chitosan derivative with galactose groups namely; galactosylated chitosan (GC), particularly recognized by the asialoglycoprotein receptor (ASGR), was synthesized and its chemical structure was thoroughly characterized by substantial techniques. Afterwards, GC-coated nanoplatform for hepatocyte attachment "APO-loaded galactosylated chitosan-coated poly(d,l-lactide-co-glycolide) nanoparticles (APO-loaded GC-coated PLGA NPs)" was developed. The prosperous APO-loaded GC-coated PLGA NPs would be comprehensively appraised through extensive investigations. Their solid state characterization using Fourier transform-infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry proved APO's encapsulation in the polymeric matrix. Transmission electron microscopy imaging of the investigated NPs highlighted their spherical architecture with a nanosized range and a characteristic halo-like appearance traceable to the GC coating of the NPs' surface. Saliently, the results of in vitro cytotoxicity screening revealed the spectacular anti-cancer efficacy of APO-loaded GC-coated PLGA NPs formula against the HepG2 cell line. Moreover, the fluorescence microscope disclosed the distinguished cellular uptake of such formula via ASGPR mediated endocytosis. Inclusively, a multifunctional nano-phytomedicine delivery system with a promising active hepatocyte-targeting, effective uptake into HepG2 cells, and sustained drug release pattern was successfully developed.


Asunto(s)
Carcinoma Hepatocelular , Quitosano , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Quitosano/química , Receptor de Asialoglicoproteína , Nanomedicina , Estudios Prospectivos , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Oxidorreductasas/uso terapéutico , Portadores de Fármacos/química , Tamaño de la Partícula
19.
Acta Pharmaceutica Sinica ; (12): 235-245, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-965702

RESUMEN

Asialoglycoprotein receptor (ASGPR) is highly expressed on the surface of parenchymal liver cells. It can specifically recognize and bind to desialylated glycoproteins which contain terminal galactose or N-acetylgalactosamine residues, and endocytosed by clathrin-mediated endocytosis, transported and then degraded in lysosome. Based on this character, ASGPR mediated liver-targeted drug delivery is likely to increase drug distribution, reduce potential side effects and lower dose. This article reviewed the expression, structure, ligand binding and endocytosis of ASGPR, and summarized the design and optimization of ASGPR ligands and the release strategies. Finally, we put forward some expects about the clinical drug development for ASGPR.

20.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500389

RESUMEN

Molecular recognition involving glycoprotein-mediated interactions is ubiquitous in both normal and pathological natural processes. Therefore, visualization of these interactions and the extent of expression of the sugars is a challenge in medical diagnosis, monitoring of therapy, and drug design. Here, we review the literature on the development and validation of probes for magnetic resonance imaging using carbohydrates either as targeting vectors or as a target. Lectins are important targeting vectors for carbohydrate end groups, whereas selectins, the asialoglycoprotein receptor, sialic acid end groups, hyaluronic acid, and glycated serum and hemoglobin are interesting carbohydrate targets.


Asunto(s)
Medios de Contraste , Glicómica , Lectinas/metabolismo , Carbohidratos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA