Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39275578

RESUMEN

In the traditional Deep Deterministic Policy Gradient (DDPG) algorithm, path planning for mobile robots in mapless environments still encounters challenges regarding learning efficiency and navigation performance, particularly adaptability and robustness to static and dynamic obstacles. To address these issues, in this study, an improved algorithm frame was proposed that designs the state and action spaces, and introduces a multi-step update strategy and a dual-noise mechanism to improve the reward function. These improvements significantly enhance the algorithm's learning efficiency and navigation performance, rendering it more adaptable and robust in complex mapless environments. Compared to the traditional DDPG algorithm, the improved algorithm shows a 20% increase in the stability of the navigation success rate with static obstacles along with a 25% reduction in pathfinding steps for smoother paths. In environments with dynamic obstacles, there is a remarkable 45% improvement in success rate. Real-world mobile robot tests further validated the feasibility and effectiveness of the algorithm in true mapless environments.

2.
Accid Anal Prev ; 204: 107620, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38823082

RESUMEN

As autonomous driving advances, autonomous vehicles will share the road with human drivers. This requires autonomous vehicles to adhere to human traffic laws under safe conditions. Simultaneously, when confronted with dangerous situations, autonomous driving should also possess the capability to deviate from traffic laws to ensure safety. However, current autonomous vehicles primarily prioritize safety and collision avoidance in their decision-making and planning. This may lead to misunderstandings and distrust from human drivers in mixed traffic flow, and even accidents. To address this, this paper proposes a decoupled hierarchical framework for compliance safety decision-making. The framework primarily consists of two layers: the decision-making layer and the motion planning layer. In the decision-making layer, a candidate behavior set is constructed based on the scenario, and a dual layer admission assessment is utilized to filter out unsafe and non-compliant behaviors from the candidate sets. Subsequently, the optimal behavior is selected as the decision behavior according to the designed evaluation metrics. The decision-making layer ensures that the vehicle can meet lane safety requirements and comply with static traffic laws. In the motion planning layer, the surrounding vehicles and the road are modeled as safety potential fields and traffic laws potential fields. Combining the optimal decision behavior, they are incorporated into the cost function of the model predictive control to achieve compliant and safe trajectory planning. The planning layer ensures that the vehicle meets trajectory safety requirements and complies with dynamic traffic laws under safe conditions. Finally, four typical scenarios are used to evaluate the effectiveness of the proposed method. The results indicate that the proposed method can ensure compliance in safe conditions while also temporarily deviating from traffic laws in emergency situations to ensure safety.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Toma de Decisiones , Seguridad , Humanos , Conducción de Automóvil/legislación & jurisprudencia , Accidentes de Tránsito/prevención & control , Accidentes de Tránsito/legislación & jurisprudencia , Seguridad/legislación & jurisprudencia , Automatización , Automóviles/legislación & jurisprudencia , Modelos Teóricos
3.
Sensors (Basel) ; 24(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38931683

RESUMEN

For the RRT* algorithm, there are problems such as greater randomness, longer time consumption, more redundant nodes, and inability to perform local obstacle avoidance when encountering unknown obstacles in the path planning process of autonomous vehicles. And the artificial potential field method (APF) applied to autonomous vehicles is prone to problems such as local optimality, unreachable targets, and inapplicability to global scenarios. A fusion algorithm combining the improved RRT* algorithm and the improved artificial potential field method is proposed. First of all, for the RRT* algorithm, the concept of the artificial potential field and probability sampling optimization strategy are introduced, and the adaptive step size is designed according to the road curvature. The path post-processing of the planned global path is carried out to reduce the redundant nodes of the generated path, enhance the purpose of sampling, solve the problem where oscillation may occur when expanding near the target point, reduce the randomness of RRT* node sampling, and improve the efficiency of path generation. Secondly, for the artificial potential field method, by designing obstacle avoidance constraints, adding a road boundary repulsion potential field, and optimizing the repulsion function and safety ellipse, the problem of unreachable targets can be solved, unnecessary steering in the path can be reduced, and the safety of the planned path can be improved. In the face of U-shaped obstacles, virtual gravity points are generated to solve the local minimum problem and improve the passing performance of the obstacles. Finally, the fusion algorithm, which combines the improved RRT* algorithm and the improved artificial potential field method, is designed. The former first plans the global path, extracts the path node as the temporary target point of the latter, guides the vehicle to drive, and avoids local obstacles through the improved artificial potential field method when encountered with unknown obstacles, and then smooths the path planned by the fusion algorithm, making the path satisfy the vehicle kinematic constraints. The simulation results in the different road scenes show that the method proposed in this paper can quickly plan a smooth path that is more stable, more accurate, and suitable for vehicle driving.

4.
Heliyon ; 10(11): e31771, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882329

RESUMEN

Control algorithms have been proposed based on knowledge related to nature-inspired mechanisms, including those based on the behavior of living beings. This paper presents a review focused on major breakthroughs carried out in the scope of applied control inspired by the gravitational attraction between bodies. A control approach focused on Artificial Potential Fields was identified, as well as four optimization metaheuristics: Gravitational Search Algorithm, Black-Hole algorithm, Multi-Verse Optimizer, and Galactic Swarm Optimization. A thorough analysis of ninety-one relevant papers was carried out to highlight their performance and to identify the gravitational and attraction foundations, as well as the universe laws supporting them. Included are their standard formulations, as well as their improved, modified, hybrid, cascade, fuzzy, chaotic and adaptive versions. Moreover, this review also deeply delves into the impact of universe-inspired algorithms on control problems of dynamic systems, providing an extensive list of control-related applications, and their inherent advantages and limitations. Strong evidence suggests that gravitation-inspired and black-hole dynamic-driven algorithms can outperform other well-known algorithms in control engineering, even though they have not been designed according to realistic astrophysical phenomena and formulated according to astrophysics laws. Even so, they support future research directions towards the development of high-sophisticated control laws inspired by Newtonian/Einsteinian physics, such that effective control-astrophysics bridges can be established and applied in a wide range of applications.

5.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38894395

RESUMEN

The artificial potential field method has efficient obstacle avoidance ability, but this traditional method suffers from local minima, unreasonable paths, and sudden changes in heading angles during obstacle avoidance, leading to rough paths and increased energy consumption. To enable autonomous mobile robots (AMR) to escape from local minimum traps and move along reasonable, smooth paths while reducing travel time and energy consumption, in this paper, an artificial potential field method based on subareas is proposed. First, the optimal virtual subgoal was obtained around the obstacles based on the relationship between the AMR, obstacles, and goal points in the local environment. This was done according to the virtual subgoal benefit function to solve the local minima problem and select a reasonable path. Secondly, when AMR encountered an obstacle, the subarea-potential field model was utilized to solve problems such as path zigzagging and increased energy consumption due to excessive changes in the turning angle; this helped to smooth its planning path. Through simulations and actual testing, the algorithm in this paper demonstrated smoother heading angle changes, reduced energy consumption, and a 10.95% average reduction in movement time when facing a complex environment. This proves the feasibility of the algorithm.

6.
Biomimetics (Basel) ; 9(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38786469

RESUMEN

Aiming at effectively generating safe and reliable motion paths for quadruped robots, a hierarchical path planning approach driven by dynamic 3D point clouds is proposed in this article. The developed path planning model is essentially constituted of two layers: a global path planning layer, and a local path planning layer. At the global path planning layer, a new method is proposed for calculating the terrain potential field based on point cloud height segmentation. Variable step size is employed to improve the path smoothness. At the local path planning layer, a real-time prediction method for potential collision areas and a strategy for temporary target point selection are developed. Quadruped robot experiments were carried out in an outdoor complex environment. The experimental results verified that, for global path planning, the smoothness of the path is improved and the complexity of the passing ground is reduced. The effective step size is increased by a maximum of 13.4 times, and the number of iterations is decreased by up to 1/6, compared with the traditional fixed step size planning algorithm. For local path planning, the path length is shortened by 20%, and more efficient dynamic obstacle avoidance and more stable velocity planning are achieved by using the improved dynamic window approach (DWA).

7.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610391

RESUMEN

Mobile robots require the ability to plan collision-free paths. This paper introduces a wheel-foot hybrid parallel-leg walking robot based on the 6-Universal-Prismatic-Universal-Revolute and 3-Prismatic (6UPUR + 3P) parallel mechanism model. To enhance path planning efficiency and obstacle avoidance capabilities, an improved artificial potential field (IAPF) method is proposed. The IAPF functions are designed to address the collision problems and issues with goals being unreachable due to a nearby problem, local minima, and dynamic obstacle avoidance in path planning. Using this IAPF method, we conduct path planning and simulation analysis for the wheel-foot hybrid parallel-legged walking robot described in this paper, and compare it with the classic artificial potential field (APF) method. The results demonstrate that the IAPF method outperforms the classic APF method in handling obstacle-rich environments, effectively addresses collision problems, and the IAPF method helps to obtain goals previously unreachable due to nearby obstacles, local minima, and dynamic planning issues.

8.
Front Neurosci ; 18: 1367248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591066

RESUMEN

This study proposes a multi-consensus formation control algorithm by artificial potential field (APF) method based on velocity threshold. The algorithm improves the multi-consensus technique. This algorithm can split a group of agents into multiple agent groups. Note that the algorithm can easily complete the queue transformation as long as the entire proxy group is connected initially and no specific edges need to be removed. Furthermore, collision avoidance and maintenance of existing communication connectivity should be considered during the movement of all agents. Therefore, we design a new swarm motion potential function. The stability of multi-consensus formation control has proven to be effective in avoiding collisions, maintaining connectivity, and generating formations. The final numerical simulation results show the role of the controller we designed.

9.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475056

RESUMEN

In this paper, an improved APF-GFARRT* (artificial potential field-guided fuzzy adaptive rapidly exploring random trees) algorithm based on APF (artificial potential field) guided sampling and fuzzy adaptive expansion is proposed to solve the problems of weak orientation and low search success rate when randomly expanding nodes using the RRT (rapidly exploring random trees) algorithm for disinfecting robots in the dense environment of disinfection operation. Considering the inherent randomness of tree growth in the RRT* algorithm, a combination of APF with RRT* is introduced to enhance the purposefulness of the sampling process. In addition, in the context of RRT* facing dense and restricted environments such as narrow passages, adaptive step-size adjustment is implemented using fuzzy control. It accelerates the algorithm's convergence and improves search efficiency in a specific area. The proposed algorithm is validated and analyzed in a specialized environment designed in MATLAB, and comparisons are made with existing path planning algorithms, including RRT, RRT*, and APF-RRT*. Experimental results show the excellent exploration speed of the improved algorithm, reducing the average initial path search time by about 46.52% compared to the other three algorithms. In addition, the improved algorithm exhibits faster convergence, significantly reducing the average iteration count and the average final path cost by about 10.01%. The algorithm's enhanced adaptability in unique environments is particularly noteworthy, increasing the chances of successfully finding paths and generating more rational and smoother paths than other algorithms. Experimental results validate the proposed algorithm as a practical and feasible solution for similar problems.

10.
Sensors (Basel) ; 24(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38400501

RESUMEN

The trajectory or moving-target tracking feature is desirable, because it can be used in various applications where the usefulness of UAVs is already proven. Tracking moving targets can also be applied in scenarios of cooperation between mobile ground-based and flying robots, where mobile ground-based robots could play the role of mobile landing pads. This article presents a novel proposition of an approach to position-tracking problems utilizing artificial potential fields (APF) for quadcopter UAVs, which, in contrast to well-known APF-based path planning methods, is a dynamic problem and must be carried out online while keeping the tracking error as low as possible. Also, a new flight control is proposed, which uses roll, pitch, and yaw angle control based on the velocity vector. This method not only allows the UAV to track a point where the potential function reaches its minimum but also enables the alignment of the course and velocity to the direction and speed given by the velocity vector from the APF. Simulation results present the possibilities of applying the APF method to holonomic UAVs such as quadcopters and show that such UAVs controlled on the basis of an APF behave as non-holonomic UAVs during 90° turns. This allows them and the onboard camera to be oriented toward the tracked target. In simulations, the AR Drone 2.0 model of the Parrot quadcopter is used, which will make it possible to easily verify the method in real flights in future research.

11.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38257531

RESUMEN

Due to limitations in operational scope and efficiency, a single Autonomous Underwater Vehicle (AUV) falls short of meeting the demands of the contemporary marine working environment. Consequently, there is a growing interest in the coordination of multiple AUVs. To address the requirements of coordinated missions, this paper proposes a comprehensive solution for the coordinated development of multi-AUV formations, encompassing long-range ferrying, coordinated detection, and surrounding attack. In the initial phase, detection devices are deactivated, employing a path planning method based on the Rapidly Exploring Random Tree (RRT) algorithm to ensure collision-free AUV movement. During the coordinated detection phase, an artificial potential field method is applied to maintain AUV formation integrity and avoid obstacles, dynamically updating environmental probability based on formation movement. In the coordinated surroundings attack stage, predictive capabilities are enhanced using Long Short-Term Memory (LSTM) networks and reinforcement learning. Specifically, LSTM forecasts the target's position, while the Deep Deterministic Policy Gradient (DDPG) method controls AUV formation. The effectiveness of this coordinated solution is validated through an integrated simulation trajectory.

12.
Front Neurorobot ; 17: 1270860, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915952

RESUMEN

Introduction: Autonomous mobile robot encompasses modules such as perception, path planning, decision-making, and control. Among these modules, path planning serves as a prerequisite for mobile robots to accomplish tasks. Enhancing path planning capability of mobile robots can effectively save costs, reduce energy consumption, and improve work efficiency. The primary slime mold algorithm (SMA) exhibits characteristics such as a reduced number of parameters, strong robustness, and a relatively high level of exploratory ability. SMA performs well in path planning for mobile robots. However, it is prone to local optimization and lacks dynamic obstacle avoidance, making it less effective in real-world settings. Methods: This paper presents an enhanced SMA (ESMA) path-planning algorithm for mobile robots. The ESMA algorithm incorporates adaptive techniques to enhance global search capabilities and integrates an artificial potential field to improve dynamic obstacle avoidance. Results and discussion: Compared to the SMA algorithm, the SMA-AGDE algorithm, which combines the Adaptive Guided Differential Evolution algorithm, and the Lévy Flight-Rotation SMA (LRSMA) algorithm, resulted in an average reduction in the minimum path length of (3.92%, 8.93%, 2.73%), along with corresponding reductions in path minimum values and processing times. Experiments show ESMA can find shortest collision-free paths for mobile robots in both static and dynamic environments.

13.
Sensors (Basel) ; 23(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005494

RESUMEN

Secure and reliable active debris removal methods are crucial for maintaining the stability of the space environment. Continuum robots, with their hyper-redundant degrees of freedom, offer the ability to capture targets of varying sizes and shapes through whole-arm grasping, making them well-suited for active debris removal missions. This paper proposes a pre-grasping motion planning method for continuum robots based on an improved artificial potential field to restrict the movement area of the grasping target and prevent its escape during the pre-grasping phase. The analysis of the grasping workspace ensures that the target is within the workspace when starting the pre-grasping motion planning by dividing the continuum robot into delivery and grasping segments. An improved artificial potential field is proposed to guide the continuum robot in surrounding the target and creating a grasping area. Specifically, the improved artificial potential field consists of a spatial rotating potential field, an attractive potential field incorporating position and posture potential fields, and a repulsive potential field. The simulation results demonstrate the effectiveness of the proposed method. A comparison of motion planning results between methods that disregard and consider the posture potential field shows that the inclusion of the posture potential field improves the performance of pre-grasping motion planning for spatial targets, achieving a success rate of up to 97.8%.

14.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005618

RESUMEN

Mobile multi-robot systems are well suited for gas leak localization in challenging environments. They offer inherent advantages such as redundancy, scalability, and resilience to hazardous environments, all while enabling autonomous operation, which is key to efficient swarm exploration. To efficiently localize gas sources using concentration measurements, robots need to seek out informative sampling locations. For this, domain knowledge needs to be incorporated into their exploration strategy. We achieve this by means of partial differential equations incorporated into a probabilistic gas dispersion model that is used to generate a spatial uncertainty map of process parameters. Previously, we presented a potential-field-control approach for navigation based on this map. We build upon this work by considering a more realistic gas dispersion model, now taking into account the mechanism of advection, and dynamics of the gas concentration field. The proposed extension is evaluated through extensive simulations. We find that introducing fluctuations in the wind direction makes source localization a fundamentally harder problem to solve. Nevertheless, the proposed approach can recover the gas source distribution and compete with a systematic sampling strategy. The estimator we present in this work is able to robustly recover source candidates within only a few seconds. Larger swarms are able to reduce total uncertainty faster. Our findings emphasize the applicability and robustness of robotic swarm exploration in dynamic and challenging environments for tasks such as gas source localization.

15.
Sensors (Basel) ; 23(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005639

RESUMEN

Most coastal trash comes from land. To prevent and control ocean pollution, it should be handled using sources that can maintain a clean ocean and improve the marine ecological environment. The proposed system can be used to inspect riverbanks and identify garbage on riverbanks. This waste can then be cleaned up before flowing into the sea. In this study, we utilized an unmanned aerial vehicle (UAV) to inspect riverbanks and applied path planning and obstacle avoidance to enhance the efficiency of UAV performance and ensure good adaptability in a complicated environment. Since most rivers in the middle and upper sections of the study area are rough and meandering, path planning was first addressed so that the drone could use the shortest path and less energy to perform the inspection task. Branches frequently protrude from the riverbank on both sides. Therefore, an instant obstacle avoidance algorithm was added to avoid various obstacles. Path planning was based on an Improved Particle Swarm Optimization (IPSO). A fuzzy system was added to the IPSO to adjust the parameters that could shorten the planned path. The Artificial Potential Field (APF) was applied for real-time dynamic obstacle avoidance. The proposed UAV system could be used to perform riverbank inspection successfully.

16.
Sensors (Basel) ; 23(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687853

RESUMEN

To address the challenge of coordinated combat involving multiple UAVs in reconnaissance and search attacks, we propose the Multi-UAV Distributed Self-Organizing Cooperative Intelligence Surveillance and Combat (CISCS) strategy. This strategy employs distributed control to overcome issues associated with centralized control and communication difficulties. Additionally, it introduces a time-constrained formation controller to address the problem of unstable multi-UAV formations and lengthy formation times. Furthermore, a multi-task allocation algorithm is designed to tackle the issue of allocating multiple tasks to individual UAVs, enabling autonomous decision-making at the local level. The distributed self-organized multi-UAV cooperative reconnaissance and combat strategy consists of three main components. Firstly, a multi-UAV finite time formation controller allows for the rapid formation of a mission-specific formation in a finite period. Secondly, a multi-task goal assignment module generates a task sequence for each UAV, utilizing an improved distributed Ant Colony Optimization (ACO) algorithm based on Q-Learning. This module also incorporates a colony disorientation strategy to expand the search range and a search transition strategy to prevent premature convergence of the algorithm. Lastly, a UAV obstacle avoidance module considers internal collisions and provides real-time obstacle avoidance paths for multiple UAVs. In the first part, we propose a formation algorithm in finite time to enable the quick formation of multiple UAVs in a three-dimensional space. In the second part, an improved distributed ACO algorithm based on Q-Learning is introduced for task allocation and generation of task sequences. This module includes a colony disorientation strategy to expand the search range and a search transition strategy to avoid premature convergence. In the third part, a multi-task target assignment module is presented to generate task sequences for each UAV, considering internal collisions. This module provides real-time obstacle avoidance paths for multiple UAVs, preventing premature convergence of the algorithm. Finally, we verify the practicality and reliability of the strategy through simulations.

17.
Sensors (Basel) ; 23(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37765974

RESUMEN

Path planning and tracking control is an essential part of autonomous vehicle research. In terms of path planning, the artificial potential field (APF) algorithm has attracted much attention due to its completeness. However, it has many limitations, such as local minima, unreachable targets, and inadequate safety. This study proposes an improved APF algorithm that addresses these issues. Firstly, a repulsion field action area is designed to consider the velocity of the nearest obstacle. Secondly, a road repulsion field is introduced to ensure the safety of the vehicle while driving. Thirdly, the distance factor between the target point and the virtual sub-target point is established to facilitate smooth driving and parking. Fourthly, a velocity repulsion field is created to avoid collisions. Finally, these repulsive fields are merged to derive a new formula, which facilitates the planning of a route that aligns with the structured road. After path planning, a cubic B-spline path optimization method is proposed to optimize the path obtained using the improved APF algorithm. In terms of path tracking, an improved sliding mode controller is designed. This controller integrates lateral and heading errors, improves the sliding mode function, and enhances the accuracy of path tracking. The MATLAB platform is used to verify the effectiveness of the improved APF algorithm. The results demonstrate that it effectively plans a path that considers car kinematics, resulting in smaller and more continuous heading angles and curvatures compared with general APF planning. In a tracking control experiment conducted on the Carsim-Simulink platform, the lateral error of the vehicle is controlled within 0.06 m at both high and low speeds, and the yaw angle error is controlled within 0.3 rad. These results validate the traceability of the improved APF method proposed in this study and the high tracking accuracy of the controller.

18.
Front Plant Sci ; 14: 1184352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546273

RESUMEN

In orchard scenes, the complex terrain environment will affect the operational safety of mowing robots. For this reason, this paper proposes an improved local path planning algorithm for an artificial potential field, which introduces the scope of an elliptic repulsion potential field as the boundary potential field. The potential field function adopts an improved variable polynomial and adds a distance factor, which effectively solves the problems of unreachable targets and local minima. In addition, the scope of the repulsion potential field is changed to an ellipse, and a fruit tree boundary potential field is added, which effectively reduces the environmental potential field complexity, enables the robot to avoid obstacles in advance without crossing the fruit tree boundary, and improves the safety of the robot when working independently. The path length planned by the improved algorithm is 6.78% shorter than that of the traditional artificial potential method, The experimental results show that the path planned using the improved algorithm is shorter, smoother and has good obstacle avoidance ability.

19.
Sensors (Basel) ; 23(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571463

RESUMEN

With the development of ocean exploration technology, the exploration of the ocean has become a hot research field involving the use of autonomous underwater vehicles (AUVs). In complex underwater environments, the fast, safe, and smooth arrival of target points is key for AUVs to conduct underwater exploration missions. Most path-planning algorithms combine deep reinforcement learning (DRL) and path-planning algorithms to achieve obstacle avoidance and path shortening. In this paper, we propose a method to improve the local minimum in the artificial potential field (APF) to make AUVs out of the local minimum by constructing a traction force. The improved artificial potential field (IAPF) method is combined with DRL for path planning while optimizing the reward function in the DRL algorithm and using the generated path to optimize the future path. By comparing our results with the experimental data of various algorithms, we found that the proposed method has positive effects and advantages in path planning. It is an efficient and safe path-planning method with obvious potential in underwater navigation devices.

20.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37447930

RESUMEN

Path planning is an important part of the navigation control system of mobile robots since it plays a decisive role in whether mobile robots can realize autonomy and intelligence. The particle swarm algorithm can effectively solve the path-planning problem of a mobile robot, but the traditional particle swarm algorithm has the problems of a too-long path, poor global search ability, and local development ability. Moreover, the existence of obstacles makes the actual environment more complex, thus putting forward more stringent requirements on the environmental adaptation ability, path-planning accuracy, and path-planning efficiency of mobile robots. In this study, an artificial potential field-based particle swarm algorithm (apfrPSO) was proposed. First, the method generates robot planning paths by adjusting the inertia weight parameter and ranking the position vector of particles (rPSO), and second, the artificial potential field method is introduced. Through comparative numerical experiments with other state-of-the-art algorithms, the results show that the algorithm proposed was very competitive.


Asunto(s)
Robótica , Robótica/métodos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA