Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plants (Basel) ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38999580

RESUMEN

Soil acidification is a significant form of agricultural soil degradation, which is accelerated by irrational fertilizer application. Sweetpotato and wheat rotation has emerged as an important rotation system and an effective strategy to optimize nutrient cycling and enhance soil fertility in hilly areas, which is also a good option to improve soil acidification and raise soil quality. Studying the effects of different fertilization regimes on soil acidification provides crucial data for managing it effectively. An eight-year field experiment explored seven fertilizer treatments: without fertilization (CK), phosphorus (P) and potassium (K) fertilization (PK), nitrogen (N) and K fertilization (NK), NP fertilization (NP), NP with K chloride fertilization (NPK1), NP with K sulfate fertilization (NPK2), and NPK combined with organic fertilization (NPKM). This study focused on the soil acidity, buffering capacity, and related indicators. After eight years of continuous fertilization in the sweetpotato-wheat rotation, all the treatments accelerated the soil acidification. Notably, N fertilization reduced the soil pH by 1.30-1.84, whereas N-deficient soil showed minimal change. Organic fertilizer addition resulted in the slowest pH reduction among the N treatments. Both N-deficient (PK) and organic fertilizer addition (NPKM) significantly increased the soil cation exchange capacity (CEC) by 8.83% and 6.55%, respectively, compared to CK. Similar trends were observed for the soil-buffering capacity (pHBC). NPK2 increased the soil K+ content more effectively than NPK1. NPKM reduced the sodium and magnesium content compared to CK, with the highest magnesium content among the treatments at 1.60 cmol·kg-1. Regression tree analysis identified the N input and soil magnesium and calcium content as the primary factors influencing the pHBC changes. Structural equation modeling showed that the soil pH is mainly influenced by the soil ammonium N content and pHBC, with coefficients of -0.28 and 0.29, respectively. Changes in the soil pH in the sweetpotato-wheat rotation were primarily associated with the pHBC and N input, where the CEC content emerged as the main factor, modulated by magnesium and calcium. Long-term organic fertilization enhances the soil pHBC and CEC, slowing the magnesium reduction and mitigating soil acidification in agricultural settings.

2.
Bot Stud ; 65(1): 21, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012376

RESUMEN

BACKGROUND: Endemism is essential in biodiversity, biogeography, and conservation tasks. Based on herbarium specimens kept in some local herbaria, many published literature, and available information, we compiled a comprehensive list and an updated assessment of the Egyptian endemic and near-endemic taxa. The application of quantitative approaches to the distribution patterns, conservation status, and habitat preference of endemic taxa in Egypt was provided. Comparisons of the near-endemic taxa with other neighbouring flora were explained. For each taxon, the distribution patterns, most preferable habitat, biological spectrum, and taxa among 14 phytogeographical regions (Operational Geographical Units; OGUs) of Egypt were determined. RESULTS: In this study, 19 endemics (out of 70) and 76 near-endemics (out of 181) are newly added taxa. Differentiation indices represented the taxonomic degrees of differentiation among endemic taxa. Two different indices were used to assess endemism: single-region endemic taxa (SRET) and multiple-region endemic taxa (MRET). Most endemic and near-endemic taxa were recorded from the mountainous Sinai (S) and the Mareotis sector of the Mediterranean coastal land (Mm). Generally, the most represented families in endemic and near-endemic areas were Asteraceae, Caryophyllaceae, Lamiaceae, and Fabaceae. More than 60% of the endemic taxa occurred in the sandy plains, wadis (desert valleys), and rocky plains and mountains. Applying hierarchical cluster analysis to the occurrences of 70 endemic taxa in the 14 studied OGUs revealed five main floristic groups (I-V), each characterized by certain OGUs. We provided eight groups of near-endemic taxa that represented their extension in neighbouring countries. CONCLUSIONS: The presented data will help to fill the gap in our knowledge of endemism, provide baseline information to understand biogeographical processes and facilitate further cooperation toward conservation purposes.

3.
Plants (Basel) ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38794473

RESUMEN

With the changing global climate, drought stress will pose a considerable challenge to the sustainable development of agriculture in arid regions. The objective of this study was to explore the resistance and water demand of cotton plants to water stress during the flowering and boll setting stage. The experimental plot was in Huaxing Farm of Changji city. The plots were irrigated, respectively, at 100% (as the control), 90%, 85% and 80% of the general irrigation amount in the local area. The relationship between the various measured indexes and final yield under different deficit irrigation (DI) treatments was studied. The results showed that deficit irrigation impacted the growth and development processes of cotton during the flowering and boll setting stage. There was a high negative correlation (R2 > 0.95) between the maximum leaf area index and yield. Similarly, there was a high correlation between malondialdehyde content and yield. Meanwhile, 90% of the local cotton irrigation contributed to water saving and even increasing cotton yield. Furthermore, based on the results, the study made an initial optimization to the local irrigation scheme by utilizing the DSSAT model. It was found that changing the irrigation interval to 12 days during the stage could further enhance cotton yield and conserve resources.

4.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38610344

RESUMEN

Permeable surface mapping, which mainly is the identification of surface materials that will percolate, is essential for various environmental and civil engineering applications, such as urban planning, stormwater management, and groundwater modeling. Traditionally, this task involves labor-intensive manual classification, but deep learning offers an efficient alternative. Although several studies have tackled aerial image segmentation, the challenges in permeable surface mapping arid environments remain largely unexplored because of the difficulties in distinguishing pixel values of the input data and due to the unbalanced distribution of its classes. To address these issues, this research introduces a novel approach using a parallel U-Net model for the fine-grained semantic segmentation of permeable surfaces. The process involves binary classification to distinguish between entirely and partially permeable surfaces, followed by fine-grained classification into four distinct permeability levels. Results show that this novel method enhances accuracy, particularly when working with small, unbalanced datasets dominated by a single category. Furthermore, the proposed model is capable of generalizing across different geographical domains. Domain adaptation is explored to transfer knowledge from one location to another, addressing the challenges posed by varying environmental characteristics. Experiments demonstrate that the parallel U-Net model outperforms the baseline methods when applied across domains. To support this research and inspire future research, a novel permeable surface dataset is introduced, with pixel-wise fine-grained labeling for five distinct permeable surface classes. In summary, in this work, we offer a novel solution to permeable surface mapping, extend the boundaries of arid environment mapping, introduce a large-scale permeable surface dataset, and explore cross-area applications of the proposed model. The three contributions are enhancing the efficiency and accuracy of permeable surface mapping while progressing in this field.

5.
Life (Basel) ; 14(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38541695

RESUMEN

Aerobic rice cultivation represents an innovative approach to reduce water consumption and enhance water use efficiency compared to traditional transplanting methods. Simultaneously, cultivating drought-tolerant rice genotypes becomes crucial to ensure their sustainable production under abrupt climate fluctuations. Hence, this study aimed to explore the physiological, agronomic, and grain quality responses of ten diverse rice genotypes to various irrigation levels under aerobic cultivation conditions. A field experiment was performed for two summer seasons of 2019 and 2020 in an arid Mediterranean climate. The irrigation regimes were well watered (13,998 m3/ha), mild drought (10,446 m3/ha), moderate drought (7125 m3/ha), and severe drought (5657 m3/ha). The results revealed considerable variations among rice genotypes under tested irrigation regimes in all physiological, agronomic, and quality traits. According to drought response indices, rice genotypes were classified into three groups (A-C), varying from tolerant to sensitive genotypes. The identified drought-tolerant genotypes (Giza-179, Hybrid-1, Giza-178, and Line-9399) recorded higher yields and crop water productivity with reduced water usage compared to drought-sensitive genotypes. Thus, these genotypes are highly recommended for cultivation in water-scarce environments. Furthermore, their characteristics could be valuable in breeding programs to improve drought tolerance in rice, particularly under aerobic cultivation conditions. The PCA biplot, heatmap, and hierarchical clustering highlighted specific physiological parameters such as relative water content, chlorophyll content, proline content, peroxidase content, and catalase content exhibited robust associations with yield traits under water deficit conditions. These parameters offer valuable insights and could serve as rapid indicators for assessing drought tolerance in rice breeding programs in arid environments.

6.
Int J Biometeorol ; 68(3): 427-434, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38147120

RESUMEN

The aim of this study was to determine effects of parity (primiparous vs. multiparous), seasonal heat stress at calving (summer vs. winter), and time postpartum on some parameters associated with colostrum quality in Holstein cows reared in the Sonoran Desert ecosystem. Forty-seven cows (11 primiparous and 36 multiparous) expected to calve during summer, and 46 cows during winter (14 primiparous and 32 multiparous) were randomly selected. Management and feeding before and after parturition were similar for cows in both seasons. After parturition, colostrum from all cows was evaluated for volume, weight, temperature, density, and content of fat, protein, solids non-fat (SNF), and immunoglobulins (IGG). Data were analyzed with a model that included effects of parity status, calving season, and time postpartum, as well as all interactions. Colostrum produced in summer was warmer (P < 0.01) by almost 6 °C than winter colostrum, while colostrum from multiparous was warmer (P = 0.02) by 1.2 °C than that produced by primiparous cows. Colostrum volume and weight were not impacted by parity, calving season or time postpartum. Density, protein, and SNF content in colostrum were higher (P < 0.01) in multiparous vs. primiparous cows, as well as at parturition (0 h postpartum) than at 12 h postpartum (P < 0.01). At calving (0 h), spring colostrum had higher fat content (P < 0.01) and lower (P < 0.01) IGG concentration than that collected in summer, and no difference (P > 0.05) between seasons was observed for these components at 12 h postpartum. Multiparous cows produced colostrum with higher (P < 0.01) IGG concentrations than primiparous cows. In conclusion, only 0-h colostrum and that from multiparous cows was categorized as "Excellent," meanwhile the colostrum produced under summer heat stress was characterized as "Good" with reduced fat content. While the lacteal secretion collected at 12 post-partum still classified as colostrum, substantially lower contents of IGG, protein, fat, and SNF decreased its classification to "Poor" from the classification of "Excellent" at 0 h postpartum.


Asunto(s)
Calostro , Lactancia , Embarazo , Femenino , Humanos , Bovinos , Animales , Estaciones del Año , Leche , Ecosistema , Periodo Posparto , Inmunoglobulina G
7.
J Environ Manage ; 351: 119861, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142600

RESUMEN

Olive oil mill wastewater (OMW) is an environmental concern in olive oil producers' regions due to its use in agricultural soils as an organic amendment. However, OMW can also be used as organic fertilizer due to their high organic matter and nutrient levels, but its use, when it occurs without environmental management, can cause serious environmental implications for soils and waters. This work evaluated the impact of different OMW levels on a set of physicochemical parameters from an agricultural vertisol where wheat grew (Triticum aestivum L var. Douma 1). A set of physicochemical parameters were conducted before adding different levels of OMW (0, 5, 10 and 15 L m-2) at two soil depths (0-30 and 30-60 cm) and for the two growing seasons to determine: i) the effect of OMW treatments on the studied physicochemical soil properties (bulk density, soil porosity, soil pH, electrical conductivity and organic matter), ii) available primary (N, P, K) and secondary macronutrients (Ca, Mg and Na), ii) micronutrients (Cu Fe, Mn and Zn), and iv) available heavy metals (Cd and Pb). The results indicated that soil physicochemical parameters were slightly improved, mainly due to improvement in organic matter, macro- and micronutrients, usually proportionally to the olive mill wastewater dose. Cadmium and Pb were within the permissible limits. The increased OMW had different behaviour on the soil nutritional balances of different elements, leading to nutrient imbalances, although in some cases, they were improved. However, the plant growth was not affected, and it was improved under 10 L m-2 and 15 L m-2 doses. The results offer valuable data about the use of OMW as organic fertilizer for crops and their potential impact on soil properties.


Asunto(s)
Metales Pesados , Olea , Aguas Residuales , Suelo/química , Aceite de Oliva/química , Fertilizantes , Plomo , Siria , Nutrientes , Micronutrientes
8.
Life (Basel) ; 13(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38137895

RESUMEN

Water deficit poses significant environmental stress that adversely affects the growth and productivity of durum wheat. Moreover, projections of climate change suggest an increase in the frequency and severity of droughts, particularly in arid regions. Consequently, there is an urgent need to develop drought-tolerant and high-yielding genotypes to ensure sustained production and global food security in response to population growth. This study aimed to explore the genetic diversity among local and exotic durum wheat genotypes using simple sequence repeat (SSR) markers and, additionally, to explore the combining ability and agronomic performance of assessed durum wheat genotypes and their 28 F1 crosses under normal and drought stress conditions. The investigated SSRs highlighted and confirmed the high genetic variation among the evaluated parental durum wheat genotypes. These diverse eight parental genotypes were consequently used to develop 28 F1s through a diallel mating design. The parental durum genotypes and their developed 28 F1s were assessed under normal and drought stress conditions. The evaluated genotypes were analyzed for their general and specific combining abilities as well as heterosis for agronomic traits under both conditions. The local cultivar Bani-Suef-7 (P8) is maintained as an effective combiner for developing shortened genotypes and improving earliness. Moreover, the local cultivars Bani-Suef-5 (P7) and Bani-Suef-7 (P8) along with the exotic line W1520 (P6) demonstrated excellent general combining ability for improving grain yield and its components under drought stress conditions. Furthermore, valuable specific hybrid combinations, W988 × W994 (P1 × P2), W996 × W1518 (P3 × P5), W1011 × W1520 (P4 × P6), and Bani-Suef-5 × Bani-Suef-7 (P7 × P8), were identified for grain yield and its components under drought stress conditions. The assessed 36 genotypes were grouped according to tolerance indices into five clusters varying from highly drought-sensitive genotypes (group E) to highly drought-tolerant (group A). The genotypes in cluster A (two crosses) followed by thirteen crosses in cluster B displayed higher drought tolerance compared to the other crosses and their parental genotypes. Subsequently, these hybrids could be considered valuable candidates in future durum wheat breeding programs to develop desired segregants under water-deficit conditions. Strong positive relationships were observed between grain yield and number of grains per spike, plant height, and 1000-grain weight under water-deficit conditions. These results highlight the significance of these traits for indirect selection under drought stress conditions, particularly in the early stages of breeding, owing to their convenient measurability.

9.
Environ Sci Pollut Res Int ; 30(57): 120266-120283, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37938486

RESUMEN

The Sistan region in Southeastern Iran is one of the world's most sensitive areas when it comes to sandstorms and wind erosion. One of the most influential factors in interpreting sandstorms is sand drift potential (DP), which is directly related to wind speed. Accurately, monitoring this phenomenon is still being determined, considering various temporal scales. Therefore, the main aim of this research is to analyze the trend of DP on monthly and annual scales. Our results showed that monthly variations of DP reached the highest and lowest values in July (609 VU) and January (47 VU), respectively. Blowing sand predominantly moved southeast, and the directional index fluctuated from 0.88 to 0.94. The annual DP was measured equal to 2700 VU, signifying a relatively high value when compared to other arid regions worldwide. The trend analysis results obtained from the Mann-Kendall test revealed both positive trends during the period 1987-2001 and negative ones from 2002 to 2016). However, the positive trend was found statistically insignificant. Furthermore, Sen's slope test results demonstrated that a negative trend could be observed with a steeper slope during July, September, and August, while a positive trend could be observed with a steeper pitch during November, December, and June. We recommend that land managers and stakeholders involved in controlling blowing sand using biological and physical methods should consider these trends in the Sistan region. Implementing nature-based solutions or control strategies should focus on these temporal sequences.


Asunto(s)
Monitoreo del Ambiente , Arena , Monitoreo del Ambiente/métodos , Irán , Viento , Minerales
10.
Animals (Basel) ; 13(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37443986

RESUMEN

Diet selection concerning browse availability of giraffes (Giraffa camelopardalis) was studied over 15 months in an arid environment in South Africa. A global positioning system collar was fitted to a giraffe individual to assess the specific areas, consisting of different vegetation types, that the population utilised during different seasons. Results are provided on diet selection in relation to browse availability between seasons and vegetation types, including tree densities and the amount of the total evapotranspiration tree equivalents. Diet selections of the giraffe population changed in response to the availability of browse material from July to October. The availability of important resource areas had a significant (p < 0.05) effect on the spatial ecology, and an increase in home range size was noted. Information that is important for the well-being of giraffes was identified. This included nutritional stress and the limited variety of the most utilised tree species available for browsing, especially during critical dry periods. The results demonstrate the importance of assessment of giraffes' diet selection in relation to browse availability, especially before introduction to a new area, to limit the lack of population growth and underperformance. This study provides valuable information towards understanding the resources and habitats required for successful giraffe management.

11.
Planta ; 258(1): 10, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37269337

RESUMEN

MAIN CONCLUSION: A multi-year study of perennial Z. dumosum shows a consistent seasonal pattern in the changes of petiole metabolism, involving mainly organic acids, polyols, phenylpropanoids, sulfate conjugates, and piperazines. GC-MS and UPLC-QTOF-MS-based metabolite profiling was performed on the petioles of the perennial desert shrub Zygophyllum dumosum Boiss (Zygophyllaceae). The petioles, which are physiologically functional throughout the year and, thus, exposed to seasonal rhythms, were collected every month for 3 years from their natural ecosystem on a southeast-facing slope. Results showed a clear multi-year pattern following seasonal successions, despite different climate conditions, i.e., rainy and drought years, throughout the research period. The metabolic pattern of change encompassed an increase in the central metabolites, including most polyols, e.g., stress-related D-pinitol, organic and sugar acids, and in the dominant specialized metabolites, which were tentatively identified as sulfate, flavonoid, and piperazine conjugates during the summer-autumn period, while significantly high levels of free amino acids were detected during the winter-spring period. In parallel, the levels of most sugars (including glucose and fructose) increased in the petioles at the flowering stage at the beginning of the spring, while most of the di- and tri-saccharides accumulated at the beginning of seed development (May-June). Analysis of the conserved seasonal metabolite pattern of change shows that metabolic events are mostly related to the stage of plant development and its interaction with the environment and less to environmental conditions per se.


Asunto(s)
Ecosistema , Zygophyllum , Estaciones del Año , Metaboloma , Cromatografía de Gases y Espectrometría de Masas , Metabolómica/métodos
12.
Trop Anim Health Prod ; 55(3): 183, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129708

RESUMEN

Two hundred Holstein heifers were divided by hair coat color in black (n1 = 60), white (n2 = 62), and mixed (n3 = 78) to accomplish two objectives: (1) to compare physiological variables using an analysis of variance, and (2) to construct regression equations to predict rectal temperature. In each heifer, rectal temperature (RT), respiration frequency (RF), and body surface temperatures (obtained with infrared thermography in eye, nose, forehead, head, neck, ear, shoulder, flank, belly, leg, loin, rump, and vulva) were measured. Black heifers had more RF and RT (P < 0.01) than mixed and white coat heifers; white heifers had similar RT than mixed color heifers, but they exhibited less RF (P < 0.05). In general, black and mixed coat color heifers had higher BST (P < 0.01) than white heifers in the majority of the anatomical regions measured. For black coat heifers, the best regression model to predict RT included three predictor variables: [RT = 35.59 - 0.013 (RH) + 0.045 (RF) + 0.019 (TEar); R2 = 71%]. For white coat heifers, the best model included two predictor variables: [RT = 35.29 + 0.035 (RF) + 0.033 (TForehead); R2 = 71%]; and for mixed coat color heifers, the best model included two predictor variables: [RT = 35.07 + 0.022 (RF) + 0.038 (THead); R2 = 44%]. Heifers with dark hair coat color showed higher physiological constants than white heifers; the prediction of rectal temperature was more precise in heifers with well-defined hair coat color. Physiological and climatic variables, along with infrared thermography, represent an appropriate combination to predict rectal temperature in Holstein heifers with predominant white or black hair coat color.


Asunto(s)
Temperatura Corporal , Clima Desértico , Animales , Bovinos , Femenino , Temperatura , Termografía/veterinaria , Nariz
13.
BMC Plant Biol ; 23(1): 266, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37202776

RESUMEN

BACKGROUND: Plants accomplish multiple functions by the interrelationships between functional traits. Clarifying the complex relationships between plant traits would enable us to better understand how plants employ different strategies to adapt to the environment. Although increasing attention is being paid to plant traits, few studies focused on the adaptation to aridity through the relationship among multiple traits. We established plant trait networks (PTNs) to explore the interdependence of sixteen plant traits across drylands. RESULTS: Our results revealed significant differences in PTNs among different plant life-forms and different levels of aridity. Trait relationships for woody plants were weaker, but were more modularized than for herbs. Woody plants were more connected in economic traits, whereas herbs were more connected in structural traits to reduce damage caused by drought. Furthermore, the correlations between traits were tighter with higher edge density in semi-arid than in arid regions, suggesting that resource sharing and trait coordination are more advantageous under low drought conditions. Importantly, our results demonstrated that stem phosphorus concentration (SPC) was a hub trait correlated with other traits across drylands. CONCLUSIONS: The results demonstrate that plants exhibited adaptations to the arid environment by adjusting trait modules through alternative strategies. PTNs provide a new insight into understanding the adaptation strategies of plants to drought stress based on the interdependence among plant functional traits.


Asunto(s)
Aclimatación , Plantas , Adaptación Fisiológica , Clima Desértico , China , Hojas de la Planta/química
14.
Insects ; 14(4)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37103202

RESUMEN

Biological control through the augmentative release of parasitoids is an important complementary tool that may be incorporated into other strategies for the eradication/eco-friendly control of pest fruit flies. However, not much information is available on the effectiveness of fruit fly parasitoids as biocontrol agents in semi-arid and temperate fruit-growing regions. Therefore, this study evaluated the effect of augmentative releases of the larval parasitoid Diachasmimorpha longicaudata (Ashmead) on Ceratitis capitata (Wiedemann) (medfly) populations over two fruit seasons (2013 and 2014) on a 10 ha irrigated fruit farm in San Juan province, central-western Argentina. The parasitoids were mass reared on irradiated medfly larvae of the Vienna-8 temperature-sensitive lethal genetic sexing strain. About 1692 (±108) parasitoids/ha were released per each of the 13 periods throughout each fruit season. Another similar farm was chosen as a control of non-parasitoid release. The numbers of captured adult flies in food-baited traps and of recovered fly puparia from sentinel fruits were considered the main variables to analyze the effect of parasitoid release on fly population suppression using a generalized least squares model. The results showed a significant decrease (p < 0.05) in the medfly population on the parasitoid release farm when compared to the Control farm, demonstrating the effectiveness of augmentative biological control using this exotic parasitoid. Thus, D. longicaudata could be used in combination with other medfly suppression strategies in the fruit production valleys of San Juan.

15.
Antioxidants (Basel) ; 12(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36978856

RESUMEN

The aim of this study is to investigate the repressive effects of enzyme-digested edible bird's nest (EBND) on the combination of arid environment and UV-induced intracellular oxidative stress, cell death, DNA double-strand breaks (DSBs) and inflammatory responses in human HaCaT keratinocytes and three-dimensional (3D) epithelium equivalents. An oxygen radical antioxidant capacity assay showed that EBND exhibited excellent peroxyl radical scavenging activity and significantly increased cellular antioxidant capacity in HaCaT cells. When EBND was administered to HaCaT cells and 3D epitheliums, it exhibited significant preventive effects on air-drying and UVA (Dry-UVA)-induced cell death and apoptosis. Dry-UVA markedly induced intracellular reactive oxygen species (ROS) generation in HaCaT cells and 3D epitheliums as quantified by CellROX® Green/Orange reagents. Once HaCaT cells and 3D epitheliums were pretreated with EBND, Dry-UVA-induced intracellular ROS were significantly reduced. The results from anti-γ-H2A.X antibody-based immunostaining showed that EBND significantly inhibited Dry-UVA-induced DSBs in HaCaT keratinocytes. Compared with sialic acid, EBND showed significantly better protection for both keratinocytes and 3D epitheliums against Dry-UVA-induced injuries. ELISA showed that EBND significantly suppressed UVB-induced IL-6 and TNF-α secretion. In conclusion, EBND could decrease arid environments and UV-induced harmful effects and inflammatory responses in human keratinocytes and 3D epithelium equivalents partially through its antioxidant capacity.

16.
Mar Pollut Bull ; 190: 114801, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36965265

RESUMEN

Survival in the early life stages is a major factor determining the growth and stability of wildlife populations. For sea turtles, nest location must provide favorable conditions to support embryonic development. Hatching success and incubation environment of green turtle eggs were examined in July 2019 at Karan Island, a major nesting site for the species in the Arabian Gulf. Mean hatching success averaged at 38.8 % (range = 2.5-75.0 %, n = 14). Eggs that suffered early embryonic death (EED) and late embryonic death (LED) represented 19.8 % (range: 3.3-64.2 %) and 41.4 % (range: 4.8-92.6 %) of the clutch on average, respectively. Nest sand was either coarse (0.5-1 mm: mean 44.8 %, range = 30.4-56.9 % by dry weight, n = 14) or medium (0.25-0.5 mm: mean 33.6 %, range = 12.0-45.5 % by dry weight, n = 14). Mean sand moisture (4.0 %, range = 3.2-4.9 %, n = 14) was at the lower margin for successful development. Hatching success was significantly higher in clutches with sand salinity <1500 EC.uS/cm (n = 5) than those above 2500 EC.uS/cm (n = 5). Mean clutch temperatures at 1200 h increased by an average of 5.4 °C during the 50-d post-oviposition from 31.2 °C to 36.6 °C. Embryos experienced lethally high temperatures in addition to impacts of other environmental factors (salinity, moisture, sand grain size), which was related to reduced hatching success. Conservation initiatives must consider the synergistic influence of the above parameters in formulating strategies to improve the overall resilience of the green turtle population in the Arabian Gulf to anthropogenic and climate change-related stressors.


Asunto(s)
Tortugas , Femenino , Animales , Arena , Comportamiento de Nidificación , Temperatura , Calor
17.
Isotopes Environ Health Stud ; 59(1): 48-65, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36755410

RESUMEN

A hydro-geochemical characterization was conducted in the northern part of the Sonora River basin, covering an area of 9400 km2. Equipotential lines indicated that groundwater circulation coincided with the surface water flow direction. Based on the groundwater temperature measured (on average ∼21 °C), only one spring exhibited thermalism (51 °C). Electrical conductivity (160-1750 µS/cm), chloride and nitrate concentrations (>10 and >45 mg/L) imply highly ionized water and anthropogenic pollution. In the river network, δ18O values revealed a clear modern meteoric origin. Focused recharge occurred mainly from the riverbeds during the rainy season. During the dry season, diffuse recharge was characterized by complex return flows from irrigation, urban, agricultural, mining, and livestock. Drilled wells (>50 m) exhibited a strong meteoric origin from higher elevations during the rainy season with minimal hydrochemical anomalies. Our results contribute to the knowledge of mountain-front and mountain-block recharge processes in a semi-arid and human-altered landscape in northern Mexico, historically characterized by limited hydrogeological data.


Asunto(s)
Agua Subterránea , Ríos , Humanos , Ríos/química , México , Monitoreo del Ambiente/métodos , Isótopos/análisis , Agua Subterránea/química , Agua
18.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119304, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35671849

RESUMEN

In recent years, it has been established that microRNAs (miRNAs) are critical for various plant physiological regulations in numerous species. Next-generation sequencing technologies have aided to our understandings related to the critical role of miRNAs during environmental stress conditions and plant development. Light influences not just miRNA accumulation but also their biological activities via regulating miRNA gene transcription, biosynthesis, and RNA-induced silencing complex (RISC) activity. Light-regulated routes, processes, and activities can all be affected by miRNAs. Here, we will explore how light affects miRNA gene expression and how conserved and novel miRNAs exhibit altered expression across different plant species in response to variable light quality. Here, we will mainly discuss recent advances in understanding how miRNAs are involved in photomorphogenesis, and photoperiod-dependent plant biological processes such as cell proliferation, metabolism, chlorophyll pigment synthesis and axillary bud growth. The review concludes by presenting future prospects via hoping that light-responsive miRNAs can be exploited in a better way to engineer economically important crops to ensure future food security.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Plantas/metabolismo , Transcripción Genética
19.
Environ Monit Assess ; 195(1): 216, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36539565

RESUMEN

Investigating the spatial response of scavenging behaviors to roads may help in understanding the relevance of this overlooked ecosystem service. Roads can provide suitable foraging sites for scavengers, whether they are obligate or facultative. However, only a few studies have investigated the impact of roads on the spatial distribution of scavenging behavior, and most of them focused on areas inhabited by species-rich communities of obligate scavengers. In this study, we investigated this issue in a poorly productive arid environment in southern Tunisia where the main facultative scavengers were stray dogs. Our experimental design was based on the monitoring of carcasses placed at different distances from the road. We found that carcasses were removed faster along roadsides than farther away, showing the important role of road traffic in shaping the spatial distribution of scavenging activity. These results differ from those found by similar experimental studies also conducted on facultative scavengers but in more productive environments. Indeed, given the scarcity of food resources in the arid study area, scavengers seemed to depend largely on road-kills for food, thus concentrating their foraging activity along the roads in accordance with the predictions of the optimal foraging theory. Overall, our findings represent clear evidence that roads and related traffic can alter the spatial distribution of ecosystem services, with potential implications for food webs and ecosystem functioning. They also stress the need for accounting for scavengers when performing road-kill surveys, but also considering road effects when carrying out monitoring of the activity of scavengers.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Animales , Perros , Cadena Alimentaria , Conducta Alimentaria , Peces , Cadáver
20.
Int J Biometeorol ; 66(12): 2489-2500, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36239801

RESUMEN

The objective of this study was to develop an equation to predict rectal temperature (RT) using body surface temperatures (BSTs), physiological and climatic variables in pubertal Holstein heifers in an arid region. Two hundred Holstein heifers were used from July to September during two consecutive summers (2019 and 2020). Respiratory frequency (RF) was used as a physiological variable and ambient temperature, relative humidity and temperature-humidity index as climatic variables. For the body surface temperatures, infrared thermography was used considering the following anatomical regions: shoulder, belly, rump, leg, neck, head, forehead, nose, loin, leg, vulva, eye, flank, and lateral area (right side). Initially, a Pearson correlation analysis examined the relationship among variables, and then multiple linear regression analysis was used to develop the prediction equation. Physiological parameters RT and RF were highly correlated with each other (r = 0.73; P˂0.0001), while all BST presented from low to moderate correlations with RT and RF. BST forehead temperature (FH) showed the highest (r = 0.58) correlation with RT. The equation RT = 35.55 + 0.033 (RF) + 0.030 (FH) + ei is considered the best regression equation model to predict RT in Holstein heifers in arid zones. This decision was made on the indicators R2 = 60%, RMSE = 0.25, and AIC = 0.25, which were considered adequate variability indicators.


Asunto(s)
Temperatura Corporal , Termografía , Bovinos , Animales , Femenino , Temperatura , Humedad , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA