Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
mSphere ; : e0052024, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258931

RESUMEN

First isolated from neotropical fruit bats in Trinidad in 1956, Tacaribe virus (TCRV) has rarely been detected since. We searched for New World arenavirus reads in roughly 5.7 million sequencing runs available on public databases using Serratus. We recovered a complete genome of a divergent TCRV in metatranscriptomic data derived from heart and eye tissue of an adult male Jamaican fruit-eating bat sampled in the Dominican Republic, 2014. In total, 2,733 reads were mapped resulting in mean coverages of 7.4-fold for the L and 10.2-fold for the S segment. Re-testing original bat specimens showed the highest viral loads in liver tissue (245 copies/mg). Sanger sequencing of PCR amplicons from liver confirmed correctness of and completed the genome recovered from metatranscriptomic data, revealing conserved arenavirus genomic organization, length, intergenic regions, and genome termini. The newly found TCRV strain tentatively named DOM2014 clustered in a basal sister relationship to all other known TCRV strains with which it shared between 83.3%-86.0% genomic and 91.8%-93.7% translated amino acid sequence identity across protein-coding regions. DOM2014 showed a conserved glycine, proline, proline, threonine (GPPT) nucleoprotein motif, which is essential for TCRV interferon ß antagonism. Our data confirm the association of TCRV with the bat genus Artibeus put into question by lethal experimental infections and scarce bat-derived TCRV genomic data. Broad genetic diversity and geographic spread require assessments of TCRV strain-associated pathogenicity, particularly for DOM2014 as a highly divergent TCRV strain. Confirmation of genomic database findings by testing original specimens provides robustness to our findings and supports the usefulness of metatranscriptomic studies. IMPORTANCE: Clade B New World arenaviruses (NWA) include rodent-borne lethal hemorrhagic fever viruses, whereas Tacaribe virus (TCRV) stands out because of its detection in bats and its presumably low zoonotic potential. However, the bat association of TCRV was put into question by lethal experimental neotropical fruit bat infections and rare TCRV detection in bats. Scarce genomic data include near-identical viruses from Caribbean bats and ticks from the US sampled 50 years later. The prototype TCRV isolate used for experimental risk assessments has an extensive passage history in suckling mouse brains. Exploring the true genetic diversity, geographic distribution, and host range of bat-borne NWA is pivotal to assess their zoonotic potential and transmission cycles. We analyzed metatranscriptomic data for evidence of NWA identifying a highly divergent TCRV in bats and confirmed virus detection in original biological materials, supporting the association of TCRV with neotropical bats and warranting investigation of strain-associated TCRV pathogenicity.

2.
Vopr Virusol ; 69(3): 203-218, 2024 Jul 05.
Artículo en Ruso | MEDLINE | ID: mdl-38996370

RESUMEN

The basis for criteria of the taxonomic classification of DNA and RNA viruses based on data of the genomic sequencing are viewed in this review. The genomic sequences of viruses, which have genome represented by double-stranded DNA (orthopoxviruses as example), positive-sense single-stranded RNA (alphaviruses and flaviviruses as example), non-segmented negative-sense single-stranded RNA (filoviruses as example), segmented negative-sense single-stranded RNA (arenaviruses and phleboviruses as example) are analyzed. The levels of genetic variability that determine the assignment of compared viruses to taxa of various orders are established for each group of viruses.


Asunto(s)
Virus ADN , Genoma Viral , Virus ARN , Virus ARN/genética , Virus ARN/clasificación , Virus ADN/genética , Virus ADN/clasificación , Filogenia , Humanos , Animales , Genómica/métodos , ARN Viral/genética , Variación Genética
3.
Bioinformation ; 20(3): 208-211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711995

RESUMEN

Iron, an essential constituent of cell metabolism, is transported intra-cellularly bound to the ubiquitous 76 kDa blood glycoprotein transferrin via the transferrin receptor, CD71. Because of its structure, CD71 facilitates the binding and penetration of a large variety of viruses into the host. Among which the hemorrhagic fever-causing New World mammarena viruses (family of single stranded ambisense segmented RNA Arenaviridae), the single stranded positive sense RNA hepatitis C virus, the single stranded negative sense segmented influenza A virus, the single stranded negative sense RNA rabies virus, the single stranded positive sense SARS-CoV2 and possibly many others. In this process, CD71 is associated with the target of the anti-proliferative antibody-1 (CD81) viral co-receptor. In light of the plethora of novel and ancient viruses and microbes emerging from melting eternal glacier ice and permafrost, it is timely and critical to define and characterize interventions, besides the soluble form of CD71 (sCD71), that can abrogate or minimize this novice non-canonical function of CD71.

4.
Front Mol Biosci ; 11: 1371551, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516183

RESUMEN

Matriglycan, a recently characterized linear polysaccharide, is composed of alternating xylose and glucuronic acid subunits bound to the ubiquitously expressed protein α-dystroglycan (α-DG). Pathogenic arenaviruses, like the Lassa virus (LASV), hijack this long linear polysaccharide to gain cellular entry. Until recently, it was unclear through what mechanisms LASV engages its matriglycan receptor to initiate infection. Additionally, how matriglycan is synthesized onto α-DG by the Golgi-resident glycosyltransferase LARGE1 remained enigmatic. Recent structural data for LARGE1 and for the LASV spike complex informs us about the synthesis of matriglycan as well as its usage as an entry receptor by arenaviruses. In this review, we discuss structural insights into the system of matriglycan generation and eventual recognition by pathogenic viruses. We also highlight the unique usage of matriglycan as a high-affinity host receptor compared with other polysaccharides that decorate cells.

5.
Epidemiol Infect ; 152: e20, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38250808

RESUMEN

Lymphocytic choriomeningitis virus (LCMV) is one of the arenaviruses infecting humans. LCMV infections have been reported worldwide in humans with varying levels of severity. To detect arenavirus RNA and LCMV-reactive antibodies in different geographical regions of Finland, we screened human serum and cerebrospinal fluid (CSF) samples, taken from suspected tick-borne encephalitis (TBE) cases, using reverse transcriptase polymerase chain reaction (RT-PCR) and immunofluorescence assay (IFA). No arenavirus nucleic acids were detected, and the overall LCMV seroprevalence was 4.5%. No seroconversions were detected in paired serum samples. The highest seroprevalence (5.2%) was detected among individuals of age group III (40-59 years), followed by age group I (under-20-year-olds, 4.9%), while the lowest seroprevalence (3.8%) was found in age group IV (60 years or older). A lower LCMV seroprevalence in older age groups may suggest waning of immunity over time. The observation of a higher seroprevalence in the younger age group and the decreasing population size of the main reservoir host, the house mouse, may suggest exposure to another LCMV-like virus in Finland.


Asunto(s)
Encefalitis Transmitida por Garrapatas , Coriomeningitis Linfocítica , Animales , Ratones , Humanos , Anciano , Adulto , Persona de Mediana Edad , Encefalitis Transmitida por Garrapatas/diagnóstico , Encefalitis Transmitida por Garrapatas/epidemiología , Finlandia/epidemiología , Estudios Seroepidemiológicos , Coriomeningitis Linfocítica/diagnóstico , Coriomeningitis Linfocítica/epidemiología , Virus de la Coriomeningitis Linfocítica , Anticuerpos Antivirales
6.
J Infect Dis ; 228(Suppl 6): S359-S375, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37849403

RESUMEN

Lassa virus (LASV), Junin virus (JUNV), and several other members of the Arenaviridae family are capable of zoonotic transfer to humans and induction of severe viral hemorrhagic fevers. Despite the importance of arenaviruses as potential pandemic pathogens, numerous gaps exist in scientific knowledge pertaining to this diverse family, including gaps in understanding replication, immunosuppression, receptor usage, and elicitation of neutralizing antibody responses, that in turn complicates development of medical countermeasures. A further challenge to the development of medical countermeasures for arenaviruses is the requirement for use of animal models at high levels of biocontainment, where each model has distinct advantages and limitations depending on, availability of space, animals species-specific reagents, and most importantly the ability of the model to faithfully recapitulate human disease. Designation of LASV and JUNV as prototype pathogens can facilitate progress in addressing the public health challenges posed by members of this important virus family.


Asunto(s)
Arenaviridae , Virus Junin , Animales , Humanos , Replicación Viral , Virus Junin/fisiología , Virus Lassa , Modelos Animales
7.
Virology ; 588: 109888, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37774602

RESUMEN

Arenaviruses are highly pathogenic viruses that pose a serious public health threat. Chapare virus (CHAV) and Machupo virus (MACV), two New World arenaviruses, cause hemorrhagic fevers with case fatality rates of up to 45%. Research on therapeutic drug targets and vaccines for these viruses is limited because biosafety level 4 containment is required for handling them. In this study, we developed reverse genetics systems, including minigenomes and recombinant viruses, that will facilitate the study of these pathogens. The minigenome system is based on the S segment of CHAV or MACV genomes expressing the fluorescent reporter gene ZsGreen (ZsG). We also generated recombinant CHAV and MACV with and without the ZsG reporter gene. As a proof-of-concept study, we used both minigenomes and recombinant viruses to test the inhibitory effects of previously reported antiviral compounds. The new reverse genetics system described here will facilitate future therapeutic studies for these two life-threatening arenaviruses.


Asunto(s)
Arenavirus del Nuevo Mundo , Genética Inversa
8.
Front Immunol ; 14: 1110522, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033933

RESUMEN

Viral-based cancer therapies have tremendous potential, especially in the context of treating poorly infiltrated cold tumors. However, in tumors with intact anti-viral interferon (IFN) pathways, while some oncolytic viruses induce strong innate and adaptive immune responses, they are neutralized before exerting their therapeutic effect. Arenaviruses, particularly the lymphocytic choriomeningitis virus (LCMV) is a noncytopathic virus with preferential cancer tropism and evolutionary mechanisms to escape the immune system for longer and to block early clearance. These escape mechanisms include inhibition of the MAVS dependent IFN pathway and spike protein antigen masking. Regarding its potential for cancer treatment, LCMV is therefore able to elicit long-term responses within the tumor microenvironment (TME), boost anti-tumor immune responses and polarize poorly infiltrating tumors towards a hot phenotype. Other arenaviruses including the attenuated Junin virus vaccine also have anti-tumor effects. Furthermore, the LCMV and Pichinde arenaviruses are currently being used to create vector-based vaccines with attenuated but replicating virus. This review focuses on highlighting the potential of arenaviruses as anti-cancer therapies. This includes providing a molecular understanding of its tropism as well as highlighting past and present preclinical and clinical applications of noncytophatic arenavirus therapies and their potential in bridging the gap in the treatment of cancers weakly responsive or unresponsive to oncolytic viruses. In summary, arenaviruses represent promising new therapies to broaden the arsenal of anti-tumor therapies for generating an immunogenic tumor microenvironment.


Asunto(s)
Virus de la Coriomeningitis Linfocítica , Neoplasias , Interferones , Neoplasias/terapia
9.
Rev Med Virol ; 33(4): e2440, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36924105

RESUMEN

Rodents are one of the most abundant mammal species in the world. They form more than two-fifth of all mammal species and there are approximately 4600 existing rodent species. Rodents are capable of transmitting deadly diseases, especially those that are caused by viruses. Viruses and their consequences have plagued the world for the last two centuries, three pandemics occurred during the last century only. The Middle East is situated at the crossroads of Africa and Asia, along with the Mediterranean Sea and the Indian Ocean, its geographic importance is gained through the diversity of topographies, biosphere, as well as climate aspects that make the region vulnerable to host emerging diseases. Refugee crises also play a major role in expected epidemic outbreaks in the region. Public health has always been the most important priority, and our aim in this review is to raise awareness among public health organisations across the Middle East about the dangers of rodent borne diseases that have been reported or are suspected to be found in the region.


Asunto(s)
Roedores , Virus , Animales , Brotes de Enfermedades , Salud Pública , Medio Oriente/epidemiología
10.
Adv Exp Med Biol ; 1407: 279-297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36920703

RESUMEN

Mammarenaviruses are classified into New World arenaviruses (NW) and Old World arenaviruses (OW). The OW arenaviruses include the first discovered mammarenavirus-lymphocytic choriomeningitis virus (LCMV) and the highly lethal Lassa virus (LASV). Mammarenaviruses are transmitted to human by rodents, resulting in severe acute infections and hemorrhagic fever. Pseudotyped viruses have been widely used as a tool in the study of mammarenaviruses. HIV-1, SIV, FIV-based lentiviral vectors, VSV-based vectors, MLV-based vectors, and reverse genetic approaches have been applied in the construction of pseudotyped mammarenaviruses. Pseudotyped mammarenaviruses are commonly used in receptor research, neutralizing antibody detection, inhibitor screening, viral virulence studies, functional analysis of N-linked glycans, and studies of viral infection, endocytosis, and fusion mechanisms.


Asunto(s)
Arenaviridae , Arenavirus del Nuevo Mundo , Humanos , Arenaviridae/genética , Pseudotipado Viral , Virus de la Coriomeningitis Linfocítica/genética , Arenavirus del Nuevo Mundo/genética , Virus Lassa/genética
11.
Mini Rev Med Chem ; 23(15): 1575-1589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733245

RESUMEN

BACKGROUND: Viral hemorrhagic fevers (VHFs) are a group of clinical syndromes caused by several different RNA virus families, including several members of the arenavirus, bunyavirus, filovirus, and flavivirus families. VHFs have high mortality rates, and they have been associated with vascular permeability, malaise, fever, variable degrees of hemorrhage, reduced plasma volume, and coagulation abnormalities. To treat such conditions, antigen-presenting cells target dysregulated immune reactions and productive infections. Monocytes and macrophages produce inflammatory cytokines that damage adaptive immunity, while infected dendritic cells fail to mature correctly, compromising adaptive immunity. Inflammation and uncontrolled virus replication are associated with vascular leakage and coagulopathy. OBJECTIVE: VHF infects both humans and animals and if not treated, causes hemorrhagic manifestations and lethal platelet dysfunction. Besides pharmacological and immunological solutions, the intervention of natural products for VHF management is of great interest. In this review, we gathered current data about the effectiveness of natural products for VHF management. METHODS: Data were extracted from Scopus, Google Scholar, PubMed, and Cochrane library in terms of clinical and animal studies published in English between 1981 to February 2022. RESULTS: Several plants from diverse families and species were identified with antiviral activity against VHF. The combination of botanical therapeutics and multitarget synergistic therapeutic effects is now the widely accepted explanation for the treatment of VHF. Most of these herbal therapeutics have shown promising immunomodulatory effects in vivo and in vitro VHF models. They can probably modulate the immune system in VHF-infected subjects mainly by interfering with certain inflammatory mediators involved in various infectious diseases. CONCLUSION: Natural, in particular, herbal sources can be valuable for the management of various VHFs and their related complications.


Asunto(s)
Arenavirus , Virus del Dengue , Fiebres Hemorrágicas Virales , Virus ARN , Humanos , Animales , Fiebres Hemorrágicas Virales/tratamiento farmacológico , Citocinas
12.
Braz J Microbiol ; 54(1): 279-284, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36441413

RESUMEN

Viral hemorrhagic fevers caused by arenaviruses are severe zoonotic diseases. In reservoirs, the presence of antibodies may indicate viral circulation in a population of a specific region, and these data can be used as an indicator for further investigations by molecular techniques. The present study aimed to detect the presence of arenavirus antibodies in wild rodents captured from 1998 to 2008 during epidemiological surveillance activities. A retrospective analysis of 2243 wild rodent blood samples using a broad cross-reactive in-house developed enzyme-linked immunosorbent assay (ELISA) revealed a 0.44% (10/2243) positive rate in wild rodents, which included Necromys lasiurus (6/1012), Calomys callosus (2/94), and Akodon sp. (2/273) species. These rodents were captured between 2002 to 2006 in Campo Alegre de Goiás/GO, Bodoquena/MS, Nuporanga/SP, and Mogi das Cruzes/SP. Our findings suggest the sylvatic circulation of arenavirus among wild rodents in the southeast region of Brazil. However, future virological and molecular studies are necessary to confirm the viral presence in these regions.


Asunto(s)
Arenavirus , Animales , Roedores , Brasil/epidemiología , Estudios Retrospectivos , Reservorios de Enfermedades , Anticuerpos Antivirales
13.
Salud(i)ciencia (Impresa) ; 25(6): 327-332, 2023. tab./fot.
Artículo en Español | LILACS | ID: biblio-1551703

RESUMEN

Rodents are very important organisms within ecosystems; however, some species are considered pests because they consume and damage crops and because they are vectors, hosts, or reservoirs in the transmission of emerging infectious diseases. Rodents in Bolivia are represented by 148 species, Oligoryzomys microtis (Allen, 1916) being a species of public health importance because it is considered a potential natural reservoir of the Chapare virus, which causes Chapare Hemorrhagic Fever, and it is a deadly disease for humans. Its impact on public health is still unknown. The present study consisted of recording the presence of the species O. microtis through the use of Sherman-type live capture traps for small mammals arranged in linear transects in the wild and intervened habitats of the Samuzabety community, where the Chapare virus was detected for the first time, this community is located in the Chapare Province of the department of Cochabamba, Bolivia. The species recorded were the rodents Oligoryzomys microtis (morphotype matogrossae), Proechimys brevicauda, Neacomys vargasllosai, Hylaeamys perenensis, and the marsupial Metachiurus nudicaudatus. The presence of the species O. microtis (morphotype matogrossae) in the community of Samuzabety is confirmed. This species is associated with forest habitats with nearby and surrounding crops. The species O. microtis has epidemiological relevance as it is the natural reservoir of the Río Mamoré Hantavirus and is currently considered a potential reservoir of the Chapare virus and other Arenaviruses.


Los roedores son organismos muy importantes dentro de los ecosistemas; sin embargo, algunas especies son consideradas como plagas porque consumen y dañan cultivos y porque son vectores, hospederos o reservorios en la trasmisión de enfermedades infecciosas emergentes. Los roedores en Bolivia están representados por 148 especies, entre las cuales Oligoryzomys microtis (Allen, 1916) es una especie de importancia en salud pública, debido a que es considerada como potencial reservorio natural del virus Chapare, el cual produce la fiebre hemorrágica Chapare, enfermedad mortal para el ser humano y con un impacto en la salud pública aún desconocido. En este estudio se registró la presencia de la especie O. microtis?/i>, mediante el uso de trampas de captura viva tipo Sherman para pequeños mamíferos dispuestas en transectos lineales, en los hábitats silvestres e intervenidos de la comunidad de Samuzabety, sitio en el que se detectó por primera vez el virus Chapare. Esta comunidad se encuentra ubicada en la Provincia Chapare del departamento de Cochabamba, Bolivia. Las especies registradas fueron los roedores Oligoryzomys microtis (morfotipo matogrossae), Proechimys brevicauda, Neacomys vargasllosai, Hylaeamys perenensis y el marsupial Metachiurus nudicaudatus. Se confirma la presencia de la especie O. microtis (morfotipo matogrossae) en la comunidad de Samuzabety, la cual se encuentra asociada con hábitats de bosques, con cultivos cercanos y a su alrededor. La especie O. microtis tiene relevancia epidemiológica al ser el reservorio natural del hantavirus Río Mamoré y al ser considerado actualmente como potencial reservorio del virus Chapare y de otros arenavirus.

14.
Emerg Infect Dis ; 28(12): 2528-2533, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36417964

RESUMEN

We detected arenavirus RNA in 1.6% of 1,047 bats in Brazil that were sampled during 2007-2011. We identified Tacaribe virus in 2 Artibeus sp. bats and a new arenavirus species in Carollia perspicillata bats that we named Tietê mammarenavirus. Our results suggest that bats are an underrecognized arenavirus reservoir.


Asunto(s)
Arenavirus , Quirópteros , Animales , Arenavirus/genética , Brasil/epidemiología
15.
Proc Natl Acad Sci U S A ; 119(30): e2201208119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858434

RESUMEN

Completion of the Lassa virus (LASV) life cycle critically depends on the activities of the virally encoded, RNA-dependent RNA polymerase in replication and transcription of the viral RNA genome in the cytoplasm of infected cells. The contribution of cellular proteins to these processes remains unclear. Here, we applied proximity proteomics to define the interactome of LASV polymerase in cells under conditions that recreate LASV RNA synthesis. We engineered a LASV polymerase-biotin ligase (TurboID) fusion protein that retained polymerase activity and successfully biotinylated the proximal proteome, which allowed the identification of 42 high-confidence LASV polymerase interactors. We subsequently performed a small interfering RNA (siRNA) screen to identify those interactors that have functional roles in authentic LASV infection. As proof of principle, we characterized eukaryotic peptide chain release factor subunit 3a (eRF3a/GSPT1), which we found to be a proviral factor that physically associates with LASV polymerase. Targeted degradation of GSPT1 by a small-molecule drug candidate, CC-90009, resulted in strong inhibition of LASV infection in cultured cells. Our work demonstrates the feasibility of using proximity proteomics to illuminate and characterize yet-to-be-defined host-pathogen interactome, which can reveal new biology and uncover novel targets for the development of antivirals against highly pathogenic RNA viruses.


Asunto(s)
Acetamidas , Antivirales , Isoindoles , Virus Lassa , Factores de Terminación de Péptidos , Piperidonas , ARN Polimerasa Dependiente del ARN , Proteínas Virales , Acetamidas/farmacología , Acetamidas/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Línea Celular Tumoral , Humanos , Isoindoles/farmacología , Isoindoles/uso terapéutico , Fiebre de Lassa/tratamiento farmacológico , Virus Lassa/efectos de los fármacos , Factores de Terminación de Péptidos/metabolismo , Piperidonas/metabolismo , Piperidonas/farmacología , Piperidonas/uso terapéutico , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteoma , Proteómica , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo
16.
Travel Med Infect Dis ; 48: 102351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35537676

RESUMEN

BACKGROUND: Only two naturally occurring human Sabiá virus (SABV) infections have been reported, and those occurred over 20 years ago. METHODS: We diagnosed two new cases of SABV infection using metagenomics in patients thought to have severe yellow fever and described new features of histopathological findings. RESULTS: We characterized clinical manifestations, histopathology and analyzed possible nosocomial transmission. Patients presented with hepatitis, bleeding, neurological alterations and died. We traced twenty-nine hospital contacts and evaluated them clinically and by RT-PCR and neutralizing antibodies. Autopsies uncovered unique features on electron microscopy, such as hepatocyte "pinewood knot" lesions. Although previous reports with similar New-World arenavirus had nosocomial transmission, our data did not find any case in contact tracing. CONCLUSIONS: Although an apparent by rare, Brazilian mammarenavirus infection is an etiology for acute hemorrhagic fever syndrome. The two fatal cases had peculiar histopathological findings not previously described. The virological diagnosis was possible only by contemporary techniques such as metagenomic assays. We found no subsequent infections when we used serological and molecular tests to evaluate close contacts.


Asunto(s)
Arenavirus del Nuevo Mundo , Infección Hospitalaria , Fiebre Amarilla , Anticuerpos Neutralizantes , Brasil/epidemiología , Humanos
17.
Viruses ; 15(1)2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36680145

RESUMEN

Although many arenaviruses cause severe diseases with high fatality rates each year, treatment options are limited to off-label use of ribavirin, and a Food and Drug Administration (FDA)-approved vaccine is not available. To identify novel therapeutic candidates against arenaviral diseases, an RNA polymerase I-driven minigenome (MG) expression system for Lassa virus (LASV) was developed and optimized for high-throughput screening (HTS). Using this system, we screened 2595 FDA-approved compounds for inhibitors of LASV genome replication and identified multiple compounds including pixantrone maleate, a topoisomerase II inhibitor, as hits. Other tested topoisomerase II inhibitors also suppressed LASV MG activity. These topoisomerase II inhibitors also inhibited Junin virus (JUNV) MG activity and effectively limited infection by the JUNV Candid #1 strain, and siRNA knockdown of both topoisomerases (IIα and IIß) restricted JUNV replication. These results suggest that topoisomerases II regulate arenavirus replication and can serve as molecular targets for panarenaviral replication inhibitors.


Asunto(s)
Arenavirus , Virus Junin , Antivirales/farmacología , ADN-Topoisomerasas de Tipo II/genética , Virus Junin/fisiología , Virus Lassa , Inhibidores de Topoisomerasa II/farmacología , Humanos
19.
Viruses ; 13(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073735

RESUMEN

Several of the human-pathogenic arenaviruses cause hemorrhagic fever and have to be handled under biosafety level 4 conditions, including Lassa virus. Rapid and safe inactivation of specimens containing these viruses is fundamental to enable downstream processing for diagnostics or research under lower biosafety conditions. We established a protocol to test the efficacy of inactivation methods using the low-pathogenic Morogoro arenavirus as surrogate for the related highly pathogenic viruses. As the validation of chemical inactivation methods in cell culture systems is difficult due to cell toxicity of commonly used chemicals, we employed filter devices to remove the chemical and concentrate the virus after inactivation and before inoculation into cell culture. Viral replication in the cells was monitored over 4 weeks by using indirect immunofluorescence and immunofocus assay. The performance of the protocol was verified using published inactivation methods including chemicals and heat. Ten additional methods to inactivate virus in infected cells or cell culture supernatant were validated and shown to reduce virus titers to undetectable levels. In summary, we provide a robust protocol for the validation of chemical and physical inactivation of arenaviruses in cell culture, which can be readily adapted to different inactivation methods and specimen matrices.


Asunto(s)
Arenavirus/fisiología , Desinfección/métodos , Inactivación de Virus , Animales , Técnicas de Cultivo de Célula , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Desinfección/normas , Humanos , Reproducibilidad de los Resultados , Manejo de Especímenes/métodos , Células Vero
20.
Viruses ; 13(4)2021 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919632

RESUMEN

Rodent-borne arenaviruses have been traditionally predominantly associated with certain muroid species from Mastomys/Praomys genera (African arenaviruses) or with species that belong to murid subfamily Cricetidae (New World arenaviruses) [...].


Asunto(s)
Infecciones por Arenaviridae/veterinaria , Arenavirus/genética , Arenavirus/patogenicidad , Secuencia de Aminoácidos , Animales , Infecciones por Arenaviridae/transmisión , Arenavirus/clasificación , Peces/virología , Humanos , Roedores/virología , Serpientes/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA