Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 393, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741080

RESUMEN

BACKGROUND: 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease, exerts influence on its host plant through various effector proteins, including SAP11CaPm which interacts with different TEOSINTE BRANCHED1/ CYCLOIDEA/ PROLIFERATING CELL FACTOR 1 and 2 (TCP) transcription factors. This study examines the transcriptional response of the plant upon early expression of SAP11CaPm. For that purpose, leaves of Nicotiana occidentalis H.-M. Wheeler were Agrobacterium-infiltrated to induce transient expression of SAP11CaPm and changes in the transcriptome were recorded until 5 days post infiltration. RESULTS: The RNA-seq analysis revealed that presence of SAP11CaPm in leaves leads to downregulation of genes involved in defense response and related to photosynthetic processes, while expression of genes involved in energy production was enhanced. CONCLUSIONS: The results indicate that early SAP11CaPm expression might be important for the colonization of the host plant since phytoplasmas lack many metabolic genes and are thus dependent on metabolites from their host plant.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana , Fotosíntesis , Phytoplasma , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo Energético/genética , Nicotiana/genética , Nicotiana/microbiología , Fotosíntesis/genética , Phytoplasma/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123246, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586278

RESUMEN

'Candidatus Phytoplasma mali' is the bacterial agent associated with Apple Proliferation, a disease that causes high economic losses in affected commercial apple growing regions. The identification of the disease is carried out by visual inspection performed by skilled professionals in the orchards. To confirm an infection, costly molecular laboratory methods must be applied. Furthermore, both methods are very time-consuming. Here, we analysed the potential of a non-destructive method using in-field measurements to differentiate infected from non-infected apple trees (Malus domestica) based on spectral signatures of fresh leaves. By using multivariate statistics, we were able to distinguish infected from non-infected trees and identified the wavelengths relevant for the differentiation. Factors affecting the differentiation performance were the sampling date and bacterial colonization behaviour.


Asunto(s)
Malus , Phytoplasma , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología
3.
Insects ; 14(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36975931

RESUMEN

The mosaic leafhopper, Orientus ishidae (Matsumura), is an Asian species widespread in Europe that can cause leaf damage in wild trees and transmit disease phytoplasmas to grapevines. Following an O. ishidae outbreak reported in 2019 in an apple orchard in northern Italy, the biology and damage caused by this species to apples were investigated during 2020 and 2021. Our studies included observations on the O. ishidae life cycle, leaf symptoms associated to its trophic activity, and its capability to acquire "Candidatus Phytoplasma mali," a causal agent of Apple Proliferation (AP). The results indicate that O. ishidae can complete the life cycle on apple trees. Nymphs emerged between May and June, and adults were present from early July to late October, with the peak of flight between July and early August. Semi-field observations allowed for an accurate description of leaf symptoms that appeared as a distinct yellowing after a one-day exposure. In field experiments, 23% of the leaves were found damaged. In addition, 16-18% of the collected leafhoppers were found carrying AP phytoplasma. We conclude that O. ishidae has the potential to be a new apple tree pest. However, further studies are required to better understand the economic impact of the infestations.

4.
Front Microbiol ; 13: 959562, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246242

RESUMEN

Phytoplasmas are insect-vectored, difficult-to-culture bacterial pathogens that infect a wide variety of crop and non-crop plants, and are associated with diseases that can lead to significant yield losses in agricultural production worldwide. Phytoplasmas are currently grouped in the provisional genus 'Candidatus Phytoplasma', which includes 49 'Candidatus' species. Further differentiation of phytoplasmas into ribosomal groups is based on the restriction fragment length polymorphism (RFLP) pattern of the 16S rRNA-encoding operon, with more than 36 ribosomal groups (16Sr) and over 100 subgroups reported. Since disease symptoms on plants are not associated with phytoplasma identity, accurate diagnostics is of critical importance to manage disease associated with these microorganisms. Phytoplasmas are typically detected from plant and insect tissue using PCR-based methods targeting universal taxonomic markers. Although these methods are relatively sensitive, specific and are widely used, they have limitations, since they provide limited resolution of phytoplasma strains, thus necessitating further assessment of biological properties and delaying implementation of mitigation measures. Moreover, the design of PCR primers that can target multiple loci from phytoplasmas that differ at the sequence level can be a significant challenge. To overcome these limitations, a PCR-independent, multilocus sequence typing (MLST) assay to characterize an array of phytoplasmas was developed. Hybridization probe s targeting cpn60, tuf, secA, secY, and nusA genes, as well as 16S and rp operons, were designed and used to enrich DNA extracts from phytoplasma-infected samples for DNA fragments corresponding to these markers prior to Illumina sequencing. This method was tested using different phytoplasmas including 'Ca. P. asteris' (16SrI-B), 'Ca. P. pruni' (16SrIII-A),'Ca. P. prunorum' (16SrX-B), 'Ca. P. pyri' (16SrX-C), 'Ca. P. mali' (16SrX-A), and 'Ca. P. solani' (16SrXII-A). Thousands of reads were obtained for each gene with multiple overlapping fragments, which were assembled to generate full-length (typically >2 kb), high-quality sequences. Phytoplasma groups and subgroups were accurately determined based on 16S ribosomal RNA and cpn60 gene sequences. Hybridization-based MLST facilitates the enrichment of target genes of phytoplasmas and allows the simultaneous determination of sequences corresponding to seven different markers. In this proof-of-concept study, hybridization-based MLST was demonstrated to be an efficient way to generate data regarding 'Ca. Phytoplasma' species/strain differentiation.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 263: 120178, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34280798

RESUMEN

In this study near infrared spectroscopical analysis of dried and ground leaves was performed and combined with a multivariate data analysis to distinguish 'Candidatus Phytoplasma mali' infected from non-infected apple trees (Malus × domestica). The bacterium is the causative agent of Apple Proliferation, one of the most threatening diseases in commercial apple growing regions. In a two-year study, leaves were sampled from three apple orchards, at different sampling events throughout the vegetation period. The spectral data were analyzed with a principal component analysis and classification models were developed. The model performance for the differentiation of Apple Proliferation diseased from non-infected trees increased throughout the vegetation period and gained best results in autumn. Even with asymptomatic leaves from infected trees a correct classification was possible indicating that the spectral-based method provides reliable results even if samples without visible symptoms are analyzed. The wavelength regions that contributed to the differentiation of infected and non-infected trees could be mainly assigned to a reduction of carbohydrates and N-containing organic compounds. Wet chemical analyses confirmed that N-containing compounds are reduced in leaves from infected trees. The results of our study provide a valuable indication that spectral analysis is a promising technique for Apple Proliferation detection in future smart farming approaches.


Asunto(s)
Malus , Phytoplasma , Proliferación Celular , Enfermedades de las Plantas , Hojas de la Planta
6.
J Insect Physiol ; 131: 104229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33766541

RESUMEN

The summer apple psyllid Cacopsylla picta (Foerster) is the vector of 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease (AP). During its phloem-feeding activities it transmits this biotrophic bacterium from infected to healthy apple trees (Malus domestica Borkh.) causing high economic losses. During its life cycle, C.picta performs two host switches: In summer, the new adult generation (emigrants) hatch on apples before they emigrate to their overwintering host conifers. The following spring, the overwintered adult generation (remigrants) remigrate into apple orchards for mating and oviposition. The preimaginal stages (nymphs) develop on apple. It is known that phytopathogen-induced changes in plant physiology can affect insect-plant-interactions. In 12 h recordings of electrical penetration graphs (EPG) it was assessed whether 'Ca. P. mali' infection of the plant affected probing and feeding behavior of the vector C.picta. Its life stage and the infection status of the host plant (and the interaction between these factors) significantly affected the first occurrence, duration and frequency of probing and feeding phases. On 'Ca. P. mali' infected plants, the phloem salivation phase occurred later than on non-infected plants. Even though all life stages fed both on phloem and xylem, significant differences were found in the frequency and duration of phloem and xylem ingestion phases. Nymphs spent the shortest time non-probing, earlier started the first leaf penetration and longer ingested xylem compared with adults. Further, phloem phases differed between migratory stages; remigrants had higher numbers of phloem ingestion events and spent longer ingesting phloem than emigrants. For emigrants, however, phloem contact was very rarely observed during our recordings. The impact of our findings for understanding the multitrophic interactions between host plant, pathogen and behavior of vector insects are discussed with regard to the epidemiology of AP and pest control strategies of the vector.


Asunto(s)
Hemípteros/fisiología , Herbivoria/fisiología , Malus/microbiología , Migración Animal , Animales , Femenino , Ninfa/fisiología , Enfermedades de las Plantas
7.
Insects ; 12(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375284

RESUMEN

Apple proliferation (AP) is one of the economically most important diseases in European apple cultivation. The disease is caused by the cell-wall-less bacterium ' Candidatus Phytoplasma mali', which is transmitted by Cacopsylla picta (Foerster) and Cacopsylla melanoneura (Foerster) (Hemiptera: Psylloidea). In South Tyrol (Italy), severe outbreaks were documented since the 1990s. Infestation rates of AP do not always correlate with the population densities of the confirmed vectors, implying the presence of other, so far unknown, hemipterian vectors. By elucidating the species community of Auchenorrhyncha (Insecta: Hemiptera) at a regional scale, more than 31,000 specimens were captured in South Tyrolean apple orchards. The occurrence of 95 species was confirmed, whereas fourteen species are new records for this territory. Based on the faunistical data, more than 3600 individuals out of 25 species were analyzed using quantitative PCR to assess the presence of AP phytoplasma. The pathogen was sporadically detected in some individuals of different species, for example in Stictocephala bisonia Kopp and Yonk (Hemiptera: Membracidae). However, the concentration of phytoplasma was much lower than in infected C. picta and C. melanoneura captured in the same region, confirming the role of the latter mentioned psyllids as the main insect vectors of AP- phytoplasma in South Tyrol.

8.
Insects ; 11(12)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255992

RESUMEN

Apple proliferation is an economically important disease and a threat for commercial apple cultivation. The causative pathogen, the bacterium 'Candidatus Phytoplasma mali', is mainly transmitted by Cacopsylla picta, a phloem-feeding insect that develops on the apple tree (Malus spp.). To investigate the feeding behavior of adults of the phytoplasma vector Cacopsylla picta in more detail, we used deep sequencing technology to identify plant-specific DNA ingested by the insect. Adult psyllids were collected in different apple orchards in the Trentino-South Tyrol region of northern Italy. DNA from the whole body of the insect was extracted and analyzed for the presence of plant DNA by performing PCR with two plant-specific primers that target the chloroplast regions trnH-psbA and rbcLa. DNA from 23 plant genera (trnH) and four plant families (rbcLa) of woody and herbaceous plant taxa was detected. Up to six and three plant genera and families, respectively, could be determined in single specimens. The results of this study contribute to a better understanding of the feeding behavior of adult Cacopsylla picta.

9.
Insects ; 11(9)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899174

RESUMEN

The transmission of phytoplasmas is the result of an intricate interplay involving pathogens, insect vectors and host plants. Knowledge of the vector's competence during its lifespan allows us to define more sustainable well-timed control strategies targeted towards the most worrisome life stages. We investigated the temporal dynamics of 'Candidatus Phytoplasma mali' load in Cacopsylla melanoneura in the different developmental stages in Northwest Italy. The phytoplasma load in the vector was evaluated in overwintering adults, nymphs and newly emerged adults after different acquisition access periods. Moreover, we followed the multiplication of the phytoplasma during the aestivation and the overwintering period on conifers. Our results confirmed the ability of remigrants to retain the phytoplasma until the end of winter. We also highlighted the high acquisition efficiency and vector competence, based on phytoplasma load, of nymphs and newly emerged adults. Therefore, particular attention should be paid to the management of overwintered C. melanoneura as soon as they return to the orchards, but also to newly emerged adults, particularly in orchards with a high infection rate and when the migration to conifers is delayed.

10.
Plants (Basel) ; 9(9)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916901

RESUMEN

The psyllids Cacopsylla melanoneura and Cacopsylla picta reproduce on apple (Malus × domestica) and transmit the bacterium 'Candidatus Phytoplasma mali', the causative agent of apple proliferation. Adult psyllids were collected by the beating-tray method from lower and upper parts of the apple tree canopy in the morning and in the afternoon. There was a trend of catching more emigrant adults of C.melanoneura in the morning and in the lower part of the canopy. For C.melanoneura remigrants, no differences were observed. The findings regarding the distribution of adults were reflected by the number of nymphs collected by wash-down sampling. The density of C.picta was too low for a statistical analysis. The vector monitoring and how it is commonly performed, is suitable for estimating densities of C.melanoneura. Nevertheless, above a certain temperature threshold, prediction of C.melanoneura density might be skewed. No evidence was found that other relatively abundant psyllid species in the orchard, viz. Baeopelma colorata, Cacopsylla breviantennata, Cacopsylla brunneipennis, Cacopsylla pruni and Trioza urticae, were involved in 'Candidatus Phytoplasma mali' transmission. The results of our study contribute to an advanced understanding of insect vector behavior and thus have a practical impact for an improved field monitoring.

11.
J Econ Entomol ; 113(2): 596-603, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31822899

RESUMEN

Cacopsylla picta (Förster, 1848) (Hemiptera: Pysllidae) is the main vector of apple proliferation, a phytoplasma-caused disease. It represents one of the most severe problems in apple orchards, and therefore, there is a mandatory requirement to chemically treat against this pest in the European Union. Sexual communication using substrate-borne vibrations was demonstrated in several psyllid species. Here, we report the characteristics of the vibrational signals emitted by C. picta during courtship behavior. The pair formation process can be divided into two main phases: identification and courtship. Females initiate the communication on the host plant by emitting trains of vibrational pulses and, during courtship, if males reply, by emitting a signal consisting of a series of pre-pulses and a 'buzz', a duet is established. Moreover, a scanning electron microscopy investigation showed the presence of a stridulatory structure on the thorax and wings of both sexes, whereas the video recordings elucidated associated wing movement. The results provide new information about the biology of this phytoplasma vector and could form a basis of an environmentally friendly pest management strategy.


Asunto(s)
Hemípteros , Malus , Phytoplasma , Animales , Proliferación Celular , Femenino , Masculino , Vibración
12.
Int J Mol Sci ; 20(18)2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31540359

RESUMEN

Effector proteins play an important role in the virulence of plant pathogens such as phytoplasma, which are the causative agents of hundreds of different plant diseases. The plant hosts comprise economically relevant crops such as apples (Malus × domestica), which can be infected by 'Candidatus Phytoplasma mali' (P. mali), a highly genetically dynamic plant pathogen. As the result of the genetic and functional analyses in this study, a new putative P. mali effector protein was revealed. The so-called "Protein in Malus Expressed 2" (PME2), which is expressed in apples during P. mali infection but not in the insect vector, shows regional genetic differences. In a heterologous expression assay using Nicotiana benthamiana and Nicotiana occidentalis mesophyll protoplasts, translocation of both PME2 variants in the cell nucleus was observed. Overexpression of the effector protein affected cell integrity in Nicotiana spp. protoplasts, indicating a potential role of this protein in pathogenic virulence. Interestingly, the two genetic variants of PME2 differ regarding their potential to manipulate cell integrity. However, the exact function of PME2 during disease manifestation and symptom development remains to be further elucidated. Aside from the first description of the function of a novel effector of P. mali, the results of this study underline the necessity for a more comprehensive description and understanding of the genetic diversity of P. mali as an indispensable basis for a functional understanding of apple proliferation disease.


Asunto(s)
Proteínas Bacterianas/genética , Malus/microbiología , Nicotiana/microbiología , Phytoplasma/fisiología , Enfermedades de las Plantas/microbiología , Secuencia de Aminoácidos , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Supervivencia Celular , Expresión Génica , Interacciones Huésped-Patógeno , Malus/citología , Phytoplasma/química , Phytoplasma/genética , Phytoplasma/patogenicidad , Protoplastos/citología , Protoplastos/microbiología , Alineación de Secuencia , Nicotiana/citología , Factores de Virulencia/análisis , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
13.
J Agric Food Chem ; 65(13): 2651-2660, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28267924

RESUMEN

Phytoplasmoses such as apple proliferation (AP) and European stone fruit yellows (ESFY) cause severe economic losses in fruit production. A common symptom of both phytoplasma diseases is early yellowing or leaf chlorosis. Even though chlorosis is a well-studied symptom of biotic and abiotic stresses, its biochemical pathways are hardly known. In particular, in this context, a potential role of the senescence-related pheophorbide a oxygenase/phyllobilin (PaO/PB) pathway is elusive, which degrades chlorophyll (Chl) to phyllobilins (PBs), most notably to colorless nonfluorescent Chl catabolites (NCCs). In this work, we identified the Chl catabolites in extracts of healthy senescent apple and apricot leaves. In extracts of apple tree leaves, a total of 12 Chl catabolites were detected, and in extracts of leaves of the apricot tree 16 Chl catabolites were found. The seven major NCC fractions in the leaves of both fruit tree species were identical and displayed known structures. All of the major Chl catabolites were also found in leaf extracts from AP- or ESFY-infected trees, providing the first evidence that the PaO/PB pathway is relevant also for pathogen-induced chlorosis. This work supports the hypothesis that Chl breakdown in senescence and phytoplasma infection proceeds via a common pathway in some members of the Rosaceae family.


Asunto(s)
Clorofila/análogos & derivados , Clorofila/metabolismo , Malus/microbiología , Oxigenasas/metabolismo , Phytoplasma/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Prunus armeniaca/microbiología , Malus/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Prunus armeniaca/metabolismo , Árboles/metabolismo , Árboles/microbiología
14.
Mol Plant Pathol ; 18(3): 435-442, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27037957

RESUMEN

The plant pathogen Candidatus Phytoplasma mali (P. mali) is the causative agent of apple proliferation, a disease of increasing importance in apple-growing areas within Europe. Despite its economic importance, little is known about the molecular mechanisms of disease manifestation within apple trees. In this study, we identified two TCP (TEOSINTE BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR) transcription factors of Malus x domestica as binding partners of the P. mali SAP11-like effector ATP_00189. Phytohormone analyses revealed an effect of P. mali infection on jasmonates, salicylic acid and abscisic acid levels, showing that P. mali affects phytohormonal levels in apple trees, which is in line with the functions of the effector assumed from its binding to TCP transcription factors. To our knowledge, this is the first characterization of the molecular targets of a P. mali effector and thus provides the basis to better understand symptom development and disease progress during apple proliferation. As SAP11 homologues are found in several Phytoplasma species infecting a broad range of different plants, SAP11-like proteins seem to be key players in phytoplasmal infection.


Asunto(s)
Malus/metabolismo , Malus/microbiología , Phytoplasma/patogenicidad , Enfermedades de las Plantas/microbiología , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Virulencia
15.
J Econ Entomol ; 108(5): 2174-83, 2015 10.
Artículo en Inglés | MEDLINE | ID: mdl-26453706

RESUMEN

The psyllid species Cacopsylla melanoneura (Förster) and Cacopsylla picta (Förster) are vectors of 'Candidatus Phytoplasma mali', the causal agent of apple proliferation, one of the economically most important apple diseases in Europe. Both vectors are present in apple orchards of South Tyrol and Trentino provinces in Northern Italy. As no direct treatment of the disease is possible, monitoring of the psyllids provides information about the vector presence in the orchards and enables targeted control. Thus, fast and reliable identification of the various psyllids occurring in the apple orchards is required. Morphological differentiation is problematic due to extensive resemblance of some psyllid species especially among females and is error-prone for nymphs. Here we present a rapid and cost-effective polymerase chain reaction-restriction fragment length polymorphism method based on the cytochrome c oxidase subunit I region for the molecular identification of the vector species as well as eight further Cacopsylla species present in the orchards. This method was verified through 98.9% consensus with morphologically identified males, through sequencing and subsequent phylogenetic analysis. In case of doubtful morphological identification of females, the method was able to provide a refined species assignment and could also remarkably facilitate the identification of nymphs.


Asunto(s)
Hemípteros/clasificación , Hemípteros/genética , Malus/microbiología , Phytoplasma/fisiología , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa/métodos , Animales , Complejo IV de Transporte de Electrones/genética , Femenino , Hemípteros/crecimiento & desarrollo , Proteínas de Insectos/genética , Insectos Vectores/clasificación , Insectos Vectores/genética , Insectos Vectores/crecimiento & desarrollo , Italia , Masculino , Ninfa/clasificación , Ninfa/genética , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción
16.
Proteomics ; 14(16): 1882-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24920314

RESUMEN

Phytoplasmas are pathogenic bacteria within the class of Mollicutes, which are associated with more than 1000 plant diseases. In this study, we applied quantitative mass spectrometry to analyse affected pathways of the model plant tobacco (Nicotiana occidentalis) upon Candidatus Phytoplasma mali strain AT infection. Using tissue obtained from leaf midribs, 1466 plant-assigned proteins were identified. For 1019 of these proteins, we could reproducibly quantify the expression changes of infected versus noninfected plants, of which 157 proteins were up- and 173 proteins were downregulated. Differential expression took place in a number of pathways, among others strong downregulation of porphyrin and chlorophyll metabolism and upregulation of alpha-linolenic acid metabolism, which was consistent with observed increased levels of jasmonic acid, a key signal molecule of plant defence. Our data shed light on the molecular networks that are involved in defence of plants against phytoplasma infection and provide a resource for further studies.


Asunto(s)
Interacciones Huésped-Patógeno , Nicotiana/metabolismo , Nicotiana/microbiología , Phytoplasma/fisiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Proteómica/métodos , Ciclopentanos/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Transducción de Señal , Nicotiana/genética
17.
Plant Physiol Biochem ; 70: 311-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23811119

RESUMEN

'Candidatus Phytoplasma mali' (Ca. P. mali) is the disease agent causing apple proliferation (AP), which has detrimental effects on production in many apple growing areas of Central and Southern Europe. The present study investigated transcriptional and biochemical changes related to the sugar metabolism as well as expression of pathogenesis-related (PR) protein genes in in vitro micro-propagated AP-infected and healthy control plantlets with the aim of shedding light on host plant response to 'Ca. P. mali' infection. Expression changes between infected and control plantlets were detected by quantitative real-time PCR analysis. The most significant transcriptional changes were observed for genes coding for pathogenesis-related proteins and for heat shock protein 70, as well as for some genes related to the sugar metabolism, such as a sorbitol transporter (SOT5), hexokinase, sucrose-phosphate synthase or granule bound starch synthase. Furthermore, biochemical analyses revealed that infected plantlets were characterized by a significant accumulation of starch and sucrose, while hexoses, such as glucose and fructose, and sorbitol were present at lower concentrations. In summary, the present analysis provides an overview of a gene set that is involved in response to phytoplasma infection and, therefore, it may help for a better understanding of the molecular mechanisms involved in phytoplasma-host plant interaction in apple.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Expresión Génica , Genes de Plantas , Malus/genética , Phytoplasma , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Hexosas/genética , Hexosas/metabolismo , Interacciones Huésped-Patógeno/genética , Malus/metabolismo , Malus/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Almidón/genética , Almidón/metabolismo , Estrés Fisiológico/genética , Sacarosa/metabolismo
18.
Plant Dis ; 90(3): 284-290, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30786550

RESUMEN

Laboratory trials were carried out to transmit "Candidatus Phytoplasma mali" to healthy apple seedlings with the leafhopper Fieberiella florii. Experiments on serial inoculation access period and molecular analyses performed on test plants and insects confirmed the ability of the leaf-hopper to carry and transmit the phytoplasma. Field surveys by means of yellow sticky traps were conducted in northwestern Italy to verify the abundance and the natural infectivity of F. florii in apple orchards and in wild vegetation in areas surrounding apple orchards. Despite the high percentages of infected specimens obtained in the apple orchards (5.7%) and in the wild vegetation areas (20.0%), the risk of apple tree infection by F. florii in nature is probably low because of the very low insect density recorded. In spite of the low number of specimens collected, the presence of the leafhopper in apple orchards in summer, when the main vector, the psyllid Cacopsylla melanoneura, feeds on alternative hosts, is meaningful. Moreover, the high degree of polyphagy of the leafhopper opens up new interesting prospects for the epidemiology of apple proliferation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA