Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39120390

RESUMEN

This study aimed to investigate the potential of antimony-doped tin oxide (ATO) as a reinforcing agent for polyamide 12 (PA12) in 3D printing by examining four mixtures with varying ATO concentrations (2.0 to 8.0 wt.%, with a 2.0 wt.% interval). These mixtures were used to fabricate filaments for the manufacturing of specimens through the material extrusion method. The mechanical properties of the resulting PA12/ATO composites and PA12 pure samples were evaluated through tensile, Charpy impact, flexural, and microhardness tests. Additionally, rheology, structure, morphology, thermal properties, pore size, and consistency in the dimensions of the samples were evaluated. Thermogravimetric analysis, along with differential scanning calorimetry, scanning electron microscopy, energy-dispersive and Raman spectroscopy, and micro-computed tomography, were conducted. The results were correlated and interpreted. The greatest reinforcement was achieved with the PA12/ATO 4.0 wt.% mixture, which exhibited a 19.3% increase in tensile strength and an 18.6% increase in flexural strength compared with pure PA12 (the control samples). The Charpy impact strength and microhardness were also improved by more than 10%. These findings indicate the merit of composites with ATO in additive manufacturing, particularly in the production of components with improved mechanical performance.

2.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38727355

RESUMEN

In this study, poly (ethylene terephthalate) (PETG) was combined with Antimony-doped Tin Oxide (ATO) to create five different composites (2.0-10.0 wt.% ATO). The PETG/ATO filaments were extruded and supplied to a material extrusion (MEX) 3D printer to fabricate the specimens following international standards. Various tests were conducted on thermal, rheological, mechanical, and morphological properties. The mechanical performance of the prepared nanocomposites was evaluated using flexural, tensile, microhardness, and Charpy impact tests. The dielectric and electrical properties of the prepared composites were evaluated over a broad frequency range. The dimensional accuracy and porosity of the 3D printed structure were assessed using micro-computed tomography. Other investigations include scanning electron microscopy and energy-dispersive X-ray spectroscopy, which were performed to investigate the structures and morphologies of the samples. The PETG/6.0 wt.% ATO composite presented the highest mechanical performance (21% increase over the pure polymer in tensile strength). The results show the potential of such nanocomposites when enhanced mechanical performance is required in MEX 3D printing applications, in which PETG is the most commonly used polymer.

3.
Nanomaterials (Basel) ; 13(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37570580

RESUMEN

In this study, the iridium nanodendrites (Ir NDs) and antimony tin oxide (ATO)-supported Ir NDs (Ir ND/ATO) were prepared by a surfactant-mediated method to investigate the effect of ATO support and evaluate the electrocatalytic activity for the oxygen evolution reaction (OER). The nano-branched Ir ND structures were successfully prepared alone or supported on ATO. The Ir NDs exhibited major diffraction peaks of the fcc Ir metal, though the Ir NDs consisted of metallic Ir as well as Ir oxides. Among the Ir ND samples, Ir ND2 showed the highest mass-based OER catalytic activity (116 mA/mg at 1.8 V), while it suffered from high degradation in activity after a long-term test. On the other hand, Ir ND2/ATO had OER activity of 798 mA/mg, and this activity remained >99% after 100 cycles of LSV and the charge transfer resistance increased by less than 3 ohm. The enhanced durability of the OER mass activities of Ir ND2/ATO catalysts over Ir NDs and Ir black could be attributed to the small crystallite size of Ir and the increase in the ratio of Ir (III) to Ir (IV), improving the interactions between the Ir NDs and the ATO support.

4.
Nanomaterials (Basel) ; 13(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513123

RESUMEN

Antimony tin oxide (Sb2O5/SnO2) is effective in the absorption of infrared radiation for applications, such as skylights. As a nanoparticle (NP), it can be incorporated into films or sheets providing infrared radiation attenuation while allowing for a transparent final product. The acute toxicity exerted by commercial Sb2O5/SnO2 (ATO) NPs was studied in adults and embryos of zebrafish (Danio rerio). Our results suggest that these NPs do not induce an acute toxicity in zebrafish, either adults or embryos. However, some sub-lethal parameters were altered: heart rate and spontaneous movements. Finally, the possible bioaccumulation of these NPs in the aquacultured marine mussel Mytilus sp. was studied. A quantitative analysis was performed using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The results indicated that, despite being scarce (2.31 × 106 ± 9.05 × 105 NPs/g), there is some accumulation of the ATO NPs in the mussel. In conclusion, commercial ATO NPs seem to be quite innocuous to aquatic organisms; however, the fact that some of the developmental parameters in zebrafish embryos are altered should be considered for further investigation. More in-depth analysis of these NPs transformations in the digestive tract of humans is needed to assess whether their accumulation in mussels presents an actual risk to humans.

5.
Pharmaceutics ; 15(6)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37376127

RESUMEN

Biofilms are responsible for persistent or recurring microbial infections. Polymicrobial biofilms are prevalent in environmental and medical niches. Dual-species biofilms formed by Gram-negative uropathogenic Escherichia coli (UPEC) and Gram-positive Staphylococcus aureus are commonly found in urinary tract infection sites. Metal oxide nanoparticles (NPs) are widely studied for their antimicrobial and antibiofilm properties. We hypothesized that antimony-doped tin (IV) oxide (ATO) NPs, which contain a combination of antimony (Sb) and tin (Sn) oxides, are good antimicrobial candidates due to their large surface area. Thus, we investigated the antibiofilm and antivirulence properties of ATO NPs against single- and dual-species biofilms formed by UPEC and S. aureus. ATO NPs at 1 mg/mL significantly inhibited biofilm formation by UPEC, S. aureus, and dual-species biofilms and reduced their main virulence attributes, such as the cell surface hydrophobicity of UPEC and hemolysis of S. aureus and dual-species biofilms. Gene expression studies showed ATO NPs downregulated the hla gene in S. aureus, which is essential for hemolysin production and biofilm formation. Furthermore, toxicity assays with seed germination and Caenorhabditis elegans models confirmed the non-toxic nature of ATO NPs. These results suggest that ATO nanoparticles and their composites could be used to control persistent UPEC and S. aureus infections.

6.
Environ Sci Technol ; 57(47): 18700-18709, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36794970

RESUMEN

Difficulties arise related to the economy-of-scale and practicability in applying conventional water treatment technologies to small and remote systems. A promising oxidation technology better suited for these applications is that of electro-oxidation (EO), whereby contaminants are degraded via direct, advanced, and/or electrosynthesized oxidant-mediated reactions. One species of oxidants of particular interest includes ferrates (Fe(VI)/(V)/(IV)), where only recently has their circumneutral synthesis been demonstrated, using high oxygen overpotential (HOP) electrodes, namely boron-doped diamond (BDD). In this study, the generation of ferrates using various HOP electrodes (BDD, NAT/Ni-Sb-SnO2, and AT/Sb-SnO2) was investigated. Ferrate synthesis was pursued in a current density range of 5-15 mA cm-2 and initial Fe3+ concentrations of 10-15 mM. Faradaic efficiencies ranged from 11-23%, depending on operating conditions, with BDD and NAT significantly outperforming AT electrodes. Speciation tests revealed that NAT synthesizes both ferrate(IV/V) and ferrate(VI), while the BDD and AT electrodes synthesized only ferrate(IV/V) species. A number of organic scavenger probes were used to test the relative reactivity, including nitrobenzene, carbamazepine, and fluconazole, whereby ferrate(IV/V) was significantly more oxidative than ferrate(VI). Finally, the ferrate(VI) synthesis mechanism by NAT electrolysis was elucidated, where coproduction of ozone was found to be a key phenomenon for Fe3+ oxidation to ferrate(VI).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/análisis , Hierro , Oxidación-Reducción , Oxidantes , Estrés Oxidativo
7.
Chem Asian J ; 18(6): e202201233, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36719256

RESUMEN

Thermally expandable microspheres (TEMs) are hollow polymeric particles in which a blowing gas has been encapsulated. This property makes them excellent for thermal insulation applications, such as lightweight fillers. This study has developed a viable technology for further improving thermal insulation properties in the field that needs excellent thermal insulation of textile fabrics. The ATO/TEMs composites were designed and prepared to reduce sunlight radiation by the charge gravity method. The test results showed that the ATO-coated TEMs effectively block thermal radiation from sunlight. The temperature difference between ATO/TEMs treated cotton and the uncoated cotton fabric was 9 °C, and the thermal conductivity coatings were 0.0432 W/m⋅K. The UPF value of ATO/TEMs (ILs) coated cotton fabric is 440, significantly higher than pure cotton. This approach can provide insight into the design of high-performance solar insulation composite structures.

8.
Anal Bioanal Chem ; 413(6): 1715-1727, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33564927

RESUMEN

A colorimetric paper-based enzyme-coupled antimony tin oxide nanoparticle (ATONP) nanobiosensor for selective detection of Cd2+ ions in clams and mussels is presented. Alkaline phosphatase (ALP) was immobilized on ATONPs via 16-phosphonohexadecanoic acid (16-PHA) to develop ATONP-ALP nanobiosensor. The biosensor was characterized using XPS, Raman spectroscopy, SEM, and EDX. ATONP-ALP nanobiosensor exhibited high selectivity towards detection of Cd2+ ion with a LOD 0.006 µg L-1 and linear range of detection 0.005-1 µg L-1. The developed biosensor was further integrated into a low-cost paper-based format. A visual color change was obtained for Cd2+ ion in the range 0.1-10 µg L-1. The developed biosensor was successfully demonstrated for the analysis of Cd2+ ions in clams with recoveries 101-104%. The ATONP-ALP nanobiosensor was validated using mussel tissue (BCR-668) and the conventional ICP-OES and ICP-MS techniques.


Asunto(s)
Técnicas Biosensibles , Cadmio/química , Colorimetría/métodos , Iones , Nanotecnología/métodos , Fosfatasa Alcalina/química , Animales , Bivalvos , Calibración , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Cinética , Límite de Detección , Microscopía Electrónica de Rastreo , Ácido Palmítico/química , Papel , Reproducibilidad de los Resultados , Alimentos Marinos , Espectrometría Raman
9.
Mater Sci Eng C Mater Biol Appl ; 59: 368-374, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26652385

RESUMEN

An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with carbon nanotubes (CNTs) and nanoparticles of antimony tin oxide (ATO). The surface layer was characterized by scanning electronmicroscopy (SEM), energy dispersive X-ray diffraction method (EDX) and ATR FT-IR spectroscopy. The proposed electrode was assessed in respect to the electro-oxidation of ractopamine. Compared with a bare GCE and a GCE electrode modified with CNTs, the ATONPs/CNTs/GCE exhibited a great catalytic activity towards the oxidation of ractopamine with a well-defined anodic peak at 600 mV. The current response was linear with the concentration of ractopamine over the range from 10 to 240 nM with a detection limit of 3.3 nM. The proposed electrode enabled the selective determination of ractopamine in the presence of high concentrations of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The proposed electrode was successfully applied for the determination of ractopamine in feed and urine samples. The sensitive and selective determination of ractopamine makes the developed method of great interest for monitoring its therapeutic use and doping control purposes.


Asunto(s)
Antimonio/química , Nanotubos de Carbono/química , Fenetilaminas/análisis , Compuestos de Estaño/química , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA