RESUMEN
Manipulating spin transport enhances the functionality of electronic devices, allowing them to surpass physical constraints related to speed and power. For this reason, the use of van der Waals multiferroics at the interface of heterostructures offers promising prospects for developing high-performance devices, enabling the electrical control of spin information. Our work focuses primarily on a mechanism for multiferroicity in two-dimensional van der Waals materials that stems from an interplay between antiferromagnetism and the breaking of inversion symmetry in certain bilayers. We provide evidence for spin-electrical couplings that include manipulating van der Waals multiferroic edges via external voltages and the subsequent control of spin transport including for fully multiferroic spin field-effect transistors.
RESUMEN
Lattice defects may work as a kind of apparatus for catching topological excitations, preventing their escape. So, the problem of removing skyrmions from eventual local defects in magnetic materials must be closely related to new technologies such as skyrmionic. Here, we examine the conditions for drawing a skyrmion from a magnetic impurity in a two-dimensional antiferromagnetic system by applying spin-polarized currents (SPC). Two types of impurities are investigated (local easy-axis and easy-plane anisotropy defects). Also, two methods to release the skyrmion with SPC are explored. In principle, our results could be qualitatively relevant to any other type of lattice defect.
RESUMEN
Co-doped SnO2 thin films were grown by sputtering technique on SiO2/Si(001) substrates at room temperature, and then, thermal treatments with and without an applied magnetic field (HTT) were performed in vacuum at 600°C for 20 min. HTT was applied parallel and perpendicular to the substrate surface. Magnetic M(H) measurements reveal the coexistence of a strong antiferromagnetic (AFM) signal and a ferromagnetic (FM) component. The AFM component has a Néel temperature higher than room temperature, the spin axis lies parallel to the substrate surface, and the highest magnetic moment m =7 µB/Co at. is obtained when HTT is applied parallel to the substrate surface. Our results show an enhancement of FM moment per Co(+2) from 0.06 to 0.42 µB/Co at. for the sample on which HTT was applied perpendicular to the surface. The FM order is attributed to the coupling of Co(+2) ions through electrons trapped at the site of oxygen vacancies, as described by the bound magnetic polaron model. Our results suggest that FM order is aligned along [101] direction of Co-doped SnO2 nanocrystals, which is proposed to be the easy magnetization axis.