Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
F1000Res ; 13: 922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257448

RESUMEN

Huntingtin encodes a 3144 amino acid protein, with a polyglutamine repeat tract at the N-terminus. Expansion of this repeat tract above a pathogenic threshold of 36 repeats is the causative mutation of Huntington's disease, a neurodegenerative disorder characterized by loss of striatal neurons. Here we have characterized twenty Huntingtin commercial antibodies for western blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. These studies are part of a larger, collaborative initiative seeking to address antibody reproducibility issues by characterizing commercially available antibodies for human proteins and publishing the results openly as a resource for the scientific community. While use of antibodies and protocols vary between laboratories, we encourage readers to use this report as a guide to select the most appropriate antibodies for their specific needs.


Asunto(s)
Anticuerpos , Western Blotting , Técnica del Anticuerpo Fluorescente , Proteína Huntingtina , Inmunoprecipitación , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/inmunología , Inmunoprecipitación/métodos , Técnica del Anticuerpo Fluorescente/métodos , Anticuerpos/inmunología , Animales , Enfermedad de Huntington/inmunología , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Células HEK293
2.
F1000Res ; 13: 481, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220380

RESUMEN

Protein-glutamine gamma-glutamyltransferase 2 (TGM2) is a Ca 2+ dependent enzyme that catalyzes transglutaminase cross-linking modifications. TGM2 is involved in various diseases, either in a protective or contributory manner, making it a crucial protein to study and determine its therapeutic potential. Identifying high-performing TGM2 antibodies would facilitate these investigations. Here we have characterized seventeen TGM2 commercial antibodies for western blot and sixteen for immunoprecipitation, and immunofluorescence. The implemented standardized experimental protocol is based on comparing read-outs in knockout cell lines against their isogenic parental controls. This study is part of a larger, collaborative initiative seeking to address antibody reproducibility issues by characterizing commercially available antibodies for human proteins and publishing the results openly as a resource for the scientific community. While the use of antibodies and protocols vary between laboratories, we encourage readers to use this report as a guide to select the most appropriate antibodies for their specific needs.


Asunto(s)
Anticuerpos , Western Blotting , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Humanos , Transglutaminasas/inmunología , Técnica del Anticuerpo Fluorescente/métodos , Inmunoprecipitación/métodos , Anticuerpos/inmunología , Proteínas de Unión al GTP/inmunología
3.
F1000Res ; 13: 817, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39169954

RESUMEN

Synaptotagmin-1 is a synaptic vesicle transmembrane protein that senses calcium influx via its tandem C2-domains, triggering synchronous neurotransmitter release. Disruption to SYT1 is associated with neurodevelopmental disorders, highlighting the importance of identifying high-quality research reagents to enhance understanding of Synaptotagmin-1 in health and disease. Here we have characterized thirteen Synaptotagmin-1 commercial antibodies for western blot, immunoprecipitation, immunofluorescence and flow cytometry using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. These studies are part of a larger, collaborative initiative seeking to address antibody reproducibility issues by characterizing commercially available antibodies for human proteins and publishing the results openly as a resource for the scientific community. While use of antibodies and protocols vary between laboratories, we encourage readers to use this report as a guide to select the most appropriate antibodies for their specific needs.


Asunto(s)
Anticuerpos , Western Blotting , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Sinaptotagmina I , Sinaptotagmina I/inmunología , Sinaptotagmina I/metabolismo , Humanos , Citometría de Flujo/métodos , Inmunoprecipitación/métodos , Técnica del Anticuerpo Fluorescente/métodos , Anticuerpos/inmunología
4.
Elife ; 132024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140332

RESUMEN

Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the 'antibody characterization crisis', and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders - researchers, universities, journals, antibody vendors and repositories, scientific societies and funders - to increase the reproducibility of studies that rely on antibodies.


Asunto(s)
Anticuerpos , Investigación Biomédica , Reproducibilidad de los Resultados , Humanos , Animales
5.
Sci Rep ; 14(1): 14710, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926592

RESUMEN

Heterozygous de novo mutations in the Activity-Dependent Neuroprotective Homeobox (ADNP) gene underlie Helsmoortel-Van der Aa syndrome (HVDAS). Most of these mutations are situated in the last exon and we previously demonstrated escape from nonsense-mediated decay by detecting mutant ADNP mRNA in patient blood. In this study, wild-type and ADNP mutants are investigated at the protein level and therefore optimal detection of the protein is required. Detection of ADNP by means of western blotting has been ambiguous with reported antibodies resulting in non-specific bands without unique ADNP signal. Validation of an N-terminal ADNP antibody (Aviva Systems) using a blocking peptide competition assay allowed to differentiate between specific and non-specific signals in different sample materials, resulting in a unique band signal around 150 kDa for ADNP, above its theoretical molecular weight of 124 kDa. Detection with different C-terminal antibodies confirmed the signals at an observed molecular weight of 150 kDa. Our antibody panel was subsequently tested by immunoblotting, comparing parental and homozygous CRISPR/Cas9 endonuclease-mediated Adnp knockout cell lines and showed disappearance of the 150 kDa signal, indicative for intact ADNP. By means of both a GFPSpark and Flag-tag N-terminally fused to a human ADNP expression vector, we detected wild-type ADNP together with mutant forms after introduction of patient mutations in E. coli expression systems by site-directed mutagenesis. Furthermore, we were also able to visualize endogenous ADNP with our C-terminal antibody panel in heterozygous cell lines carrying ADNP patient mutations, while the truncated ADNP mutants could only be detected with epitope-tag-specific antibodies, suggesting that addition of an epitope-tag possibly helps stabilizing the protein. However, western blotting of patient-derived hiPSCs, immortalized lymphoblastoid cell lines and post-mortem patient brain material failed to detect a native mutant ADNP protein. In addition, an N-terminal immunoprecipitation-competent ADNP antibody enriched truncating mutants in overexpression lysates, whereas implementation of the same method failed to enrich a possible native mutant protein in immortalized patient-derived lymphoblastoid cell lines. This study aims to shape awareness for critical assessment of mutant ADNP protein analysis in Helsmoortel-Van der Aa syndrome.


Asunto(s)
Proteínas de Homeodominio , Proteínas del Tejido Nervioso , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Mutación , Células HEK293 , Trastorno del Espectro Autista , Cardiopatías , Facies , Trastornos del Neurodesarrollo
6.
Acta Neuropathol ; 147(1): 87, 2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761203

RESUMEN

Antibodies are essential research tools whose performance directly impacts research conclusions and reproducibility. Owing to its central role in Alzheimer's disease and other dementias, hundreds of distinct antibody clones have been developed against the microtubule-associated protein Tau and its multiple proteoforms. Despite this breadth of offer, limited understanding of their performance and poor antibody selectivity have hindered research progress. Here, we validate a large panel of Tau antibodies by Western blot (79 reagents) and immunohistochemistry (35 reagents). We address the reagents' ability to detect the target proteoform, selectivity, the impact of protein phosphorylation on antibody binding and performance in human brain samples. While most antibodies detected Tau at high levels, many failed to detect it at lower, endogenous levels. By WB, non-selective binding to other proteins affected over half of the antibodies tested, with several cross-reacting with the related MAP2 protein, whereas the "oligomeric Tau" T22 antibody reacted with monomeric Tau by WB, thus calling into question its specificity to Tau oligomers. Despite the presumption that "total" Tau antibodies are agnostic to post-translational modifications, we found that phosphorylation partially inhibits binding for many such antibodies, including the popular Tau-5 clone. We further combine high-sensitivity reagents, mass-spectrometry proteomics and cDNA sequencing to demonstrate that presumptive Tau "knockout" human cells continue to express residual protein arising through exon skipping, providing evidence of previously unappreciated gene plasticity. Finally, probing of human brain samples with a large panel of antibodies revealed the presence of C-term-truncated versions of all main Tau brain isoforms in both control and tauopathy donors. Ultimately, we identify a validated panel of Tau antibodies that can be employed in Western blotting and/or immunohistochemistry to reliably detect even low levels of Tau expression with high selectivity. This work represents an extensive resource that will enable the re-interpretation of published data, improve reproducibility in Tau research, and overall accelerate scientific progress.


Asunto(s)
Anticuerpos , Western Blotting , Encéfalo , Inmunohistoquímica , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/inmunología , Humanos , Inmunohistoquímica/métodos , Anticuerpos/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Fosforilación , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inmunología , Reproducibilidad de los Resultados
7.
Methods Mol Biol ; 2790: 405-416, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649583

RESUMEN

Antibodies are a valuable research tool, with uses including detection and quantification of specific proteins. By using peptide fragments to raise antibodies, they can be designed to differentiate between structurally similar proteins, or to bind conserved motifs in divergent proteins. Peptide sequence selection and antibody validation are crucial to ensure reliable results from antibody-based experiments. This chapter describes the steps for the identification of peptide sequences to produce protein- or isoform-specific antibodies using recombinant technologies as well as the subsequent validation of such antibodies. The photosynthetic protein Rubisco activase is used as a case study to explain the various steps involved and key aspects to take into consideration.


Asunto(s)
Anticuerpos , Isoformas de Proteínas , Anticuerpos/química , Anticuerpos/inmunología , Anticuerpos/metabolismo , Fotosíntesis , Secuencia de Aminoácidos , Proteínas de Plantas/metabolismo
8.
MAbs ; 16(1): 2323706, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444344

RESUMEN

Antibodies are one of the most important reagents used in biomedical and fundamental research, used to identify, and quantify proteins, contribute to knowledge of disease mechanisms, and validate drug targets. Yet many antibodies used in research do not recognize their intended target, or recognize additional molecules, compromising the integrity of research findings and leading to waste of resources, lack of reproducibility, failure of research projects, and delays in drug development. Researchers frequently use antibodies without confirming that they perform as intended in their application of interest. Here we argue that the determinants of end-user antibody choice and use are critical, and under-addressed, behavioral drivers of this problem. This interacts with the batch-to-batch variability of these biological reagents, and the paucity of available characterization data for most antibodies, making it more difficult for researchers to choose high quality reagents and perform necessary validation experiments. The open-science company YCharOS works with major antibody manufacturers and knockout cell line producers to characterize antibodies, identifying high-performing renewable antibodies for many targets in neuroscience. This shows the progress that can be made by stakeholders working together. However, their work so far applies to only a tiny fraction of available antibodies. Where characterization data exists, end-users need help to find and use it appropriately. While progress has been made in the context of technical solutions and antibody characterization, we argue that initiatives to make best practice behaviors by researchers more feasible, easy, and rewarding are needed. Global cooperation and coordination between multiple partners and stakeholders will be crucial to address the technical, policy, behavioral, and open data sharing challenges. We offer potential solutions by describing our Only Good Antibodies initiative, a community of researchers and partner organizations working toward the necessary change. We conclude with an open invitation for stakeholders, including researchers, to join our cause.


Asunto(s)
Anticuerpos , Difusión de la Información , Reproducibilidad de los Resultados , Línea Celular , Políticas
9.
F1000Res ; 12: 172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106655

RESUMEN

Moesin is a cytoskeletal adaptor protein, involved in the modification of the actin cytoskeleton, with relevance to Alzheimer's Disease. Well characterized anti-Moesin antibodies would benefit the scientific community. In this study, we have characterized ten Moesin commercial antibodies in Western Blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. These studies are part of a larger, collaborative initiative seeking to address antibody reproducibility by characterizing commercially available antibodies for human proteins and publishing the results openly as a resource for the scientific community. While use of antibodies and protocols vary between laboratories, we encourage readers to use this report as a guide to select the most appropriate antibodies for their specific needs.


Asunto(s)
Anticuerpos , Proteínas del Citoesqueleto , Humanos , Reproducibilidad de los Resultados , Proteínas del Citoesqueleto/metabolismo , Western Blotting , Inmunoprecipitación , Técnica del Anticuerpo Fluorescente
10.
Elife ; 122023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37962204

RESUMEN

A strategy to identify high-quality commercially available antibodies for research reveals extensive use of non-specific antibodies and offers solutions for future large-scale testing.


Asunto(s)
Anticuerpos , Especificidad de Anticuerpos
11.
Elife ; 122023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37995198

RESUMEN

Antibodies are critical reagents to detect and characterize proteins. It is commonly understood that many commercial antibodies do not recognize their intended targets, but information on the scope of the problem remains largely anecdotal, and as such, feasibility of the goal of at least one potent and specific antibody targeting each protein in a proteome cannot be assessed. Focusing on antibodies for human proteins, we have scaled a standardized characterization approach using parental and knockout cell lines (Laflamme et al., 2019) to assess the performance of 614 commercial antibodies for 65 neuroscience-related proteins. Side-by-side comparisons of all antibodies against each target, obtained from multiple commercial partners, have demonstrated that: (i) more than 50% of all antibodies failed in one or more applications, (ii) yet, ~50-75% of the protein set was covered by at least one high-performing antibody, depending on application, suggesting that coverage of human proteins by commercial antibodies is significant; and (iii) recombinant antibodies performed better than monoclonal or polyclonal antibodies. The hundreds of underperforming antibodies identified in this study were found to have been used in a large number of published articles, which should raise alarm. Encouragingly, more than half of the underperforming commercial antibodies were reassessed by the manufacturers, and many had alterations to their recommended usage or were removed from the market. This first study helps demonstrate the scale of the antibody specificity problem but also suggests an efficient strategy toward achieving coverage of the human proteome; mine the existing commercial antibody repertoire, and use the data to focus new renewable antibody generation efforts.


Commercially produced antibodies are essential research tools. Investigators at universities and pharmaceutical companies use them to study human proteins, which carry out all the functions of the cells. Scientists usually buy antibodies from commercial manufacturers who produce more than 6 million antibody products altogether. Yet many commercial antibodies do not work as advertised. They do not recognize their intended protein target or may flag untargeted proteins. Both can skew research results and make it challenging to reproduce scientific studies, which is vital to scientific integrity. Using ineffective commercial antibodies likely wastes $1 billion in research funding each year. Large-scale validation of commercial antibodies by an independent third party could reduce the waste and misinformation associated with using ineffective commercial antibodies. Previous research testing an antibody validation pipeline showed that a commercial antibody widely used in studies to detect a protein involved in amyotrophic lateral sclerosis did not work. Meanwhile, the best-performing commercial antibodies were not used in research. Testing commercial antibodies and making the resulting data available would help scientists identify the best study tools and improve research reliability. Ayoubi et al. collaborated with antibody manufacturers and organizations that produce genetic knock-out cell lines to develop a system validating the effectiveness of commercial antibodies. In the experiments, Ayoubi et al. tested 614 commercial antibodies intended to detect 65 proteins involved in neurologic diseases. An effective antibody was available for about two thirds of the 65 proteins. Yet, hundreds of the antibodies, including many used widely in studies, were ineffective. Manufacturers removed some underperforming antibodies from the market or altered their recommended uses based on these data. Ayoubi et al. shared the resulting data on Zenodo, a publicly available preprint database. The experiments suggest that 20-30% of protein studies use ineffective antibodies, indicating a substantial need for independent assessment of commercial antibodies. Ayoubi et al. demonstrated their side-by-side antibody comparison methods were an effective and efficient way of validating commercial antibodies. Using this approach to test commercial antibodies against all human proteins would cost about $50 million. But it could save much of the $1 billion wasted each year on research involving ineffective antibodies. Independent validation of commercial antibodies could also reduce wasted efforts by scientists using ineffective antibodies and improve the reliability of research results. It would also enable faster, more reliable research that may help scientists understand diseases and develop new therapies to improve patient's lives.


Asunto(s)
Anticuerpos , Proteoma , Humanos , Anticuerpos/química
12.
F1000Res ; 12: 391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37860271

RESUMEN

Superoxide dismutase [Cu-Zn] 1 (SOD1), is an antioxidant enzyme encoded by the gene SOD1, responsible for regulating oxidative stress levels by sequestering free radicals. Identified as the first gene with mutations in Amyotrophic lateral sclerosis (ALS), SOD1 is a determinant for studying diseases of aging and neurodegeneration. With guidance on well-characterized anti-SOD1 antibodies, the reproducibility of SOD1 research would be enhanced. In this study, we characterized eleven SOD1 commercial antibodies for Western blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.


Asunto(s)
Anticuerpos , Superóxido Dismutasa , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Reproducibilidad de los Resultados , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Western Blotting , Inmunoprecipitación , Técnica del Anticuerpo Fluorescente , Zinc
13.
F1000Res ; 12: 1344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854875

RESUMEN

YCharOS is a collaborative initiative aimed at characterising antibodies against the entire human proteome. As of August 2023, they have presented comprehensive knockout characterisation data for 812 antibodies and 78 proteins using techniques such as Western blot, immunoprecipitation, and immunofluorescence. YCharOS consolidates its data into reports (one protein per report) available on Zenodo, a public repository controlled by CERN, to ensure open access. To enhance the visibility of their work, the group is progressively converting their Zenodo reports into F1000 articles, collected on the YCharOS Gateway, and indexed via PubMed. Their data is also accessible through searches on the Antibody Registry. The provided data is a valuable resource for researchers when selecting antibodies for specific applications, although certain limitations should be considered. The data accumulated thus far has illuminated the extent of the problem when poorly performing antibodies are employed in research. While the scientific community was already aware that this was likely a widespread issue, the establishment of a collaborative open science project with industry partners introduces an innovative solution that holds the potential to yield significant returns on investment in the public interest. This potential is substantiated by the number of antibodies that have either been withdrawn or had their recommended usage altered by the vendor. However, despite the discovery of high-performing renewable antibodies for most of the studied proteins, this accounts for a tiny fraction of the human proteome and the commercial antibody market. To realise the full potential of this work, end-users must adjust their antibody procurement and usage practises in line with the provided data. This editorial offers a guide on how individual scientists can utilise the YCharOS data, in addition to sharing the insights gained from the data thus far with the wider scientific community.


Asunto(s)
Anticuerpos , Proteoma , Humanos
14.
Methods Mol Biol ; 2702: 451-465, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37679635

RESUMEN

To develop reproducible results, it is critical that all reagents used in an experiment be validated in an alternative or independent method. We present two such independent methods for determining the specificity of antibodies: (1) "MILKSHAKE," which can be used to validate the liability and specificity of antibodies directed against post-translationally-modified epitopes, and (2) "Sundae," which is a more complete alanine-like scanning method that can be used to better understand the binding and bioactivity of specific residues of a protein. We apply both of these methods to the interaction between an antibody and its antigen.


Asunto(s)
Alanina , Anticuerpos , Epítopos
15.
F1000Res ; 12: 403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767023

RESUMEN

CHCHD10 is a mitochondrial protein, implicated in the regulation of mitochondrial morphology and cristae structure, as well as the maintenance of mitochondrial DNA integrity. Recently discovered to be associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in its mutant form, the scientific community would benefit from the availability of validated anti-CHCHD10 antibodies. In this study, we characterized four CHCHD10 commercial antibodies for Western Blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. As this study highlights high-performing antibodies for CHCHD10, we encourage readers to use it as a guide to select the most appropriate antibody for their specific needs.

16.
Animals (Basel) ; 13(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37760333

RESUMEN

In recent years, research on fish has seen remarkable advancements, especially in aquaculture, ornamental fish industry, and biomedical studies. Immunohistochemistry has become crucial in fish research, aiding in physiological and pathological investigations. However, the use of antibodies originally developed for mammals has raised concerns about their cross-reactivity and specificity in fish. This study systematically evaluated the reactivity of commonly used antibodies for diagnostic purposes, especially in fish pathology, including pan-cytokeratin, vimentin, S-100, glial fibrillary acidic protein, and desmin in the tissue of Sparus aurata, Dicentrarchus labrax, Oncorhynchus mykiss, and Carassius auratus. Western immunoblotting was employed to assess antibody specificity. The results revealed that the pan-cytokeratin and glial fibrillary acidic protein antibodies cross-react with all tested fish species, while S-100 demonstrated specific staining in sea bream, goldfish, and rainbow trout tissues. Conversely, vimentin and desmin antibodies displayed no reactivity. In conclusion, the anti-cytokeratin clone AE1/AE3 and the polyclonal rabbit anti-glial fibrillary acidic protein antibody, which are extensively used in mammals, were validated for fish immunohistochemical studies. Regrettably, D33 anti-desmin and V9 anti-vimentin clones are unsuitable for immunohistochemistry in the tested fish. These findings underscore the need for species-specific antibodies and proper validation for accurate immunohistochemistry analyses in fish research.

17.
J Endocr Soc ; 7(10): bvad113, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693686

RESUMEN

Immunohistochemical visualization of progesterone receptor (PR)-expressing cells in the brain is a powerful technique to investigate the role of progesterone in the neuroendocrine regulation of fertility. A major obstacle to the immunohistochemical visualization of progesterone-sensitive cells in the rodent brain has been the discontinuation of the commercially produced A0098 rabbit polyclonal PR antibody by DAKO. To address the unavailability of this widely used PR antibody, we optimized and evaluated 4 alternative commercial PR antibodies and found that each lacked the specificity and/or sensitivity to immunohistochemically label PR-expressing cells in paraformaldehyde-fixed female mouse brain sections. As a result, we developed and validated a new custom RC269 PR antibody, directed against the same 533-547 amino acid sequence of the human PR as the discontinued A0098 DAKO PR antibody. Immunohistochemical application of the RC269 PR antibody on paraformaldehyde-fixed mouse brain sections resulted in nuclear PR labeling that was highly distinguishable from background, specific to its antigen, highly regulated by estradiol, matched the known distribution of PR protein expression in the female mouse hypothalamus, and nearly identical to that of the discontinued A0098 DAKO PR antibody. In summary, the RC269 PR antibody is a specific and sensitive antibody to immunohistochemically visualize PR-expressing cells in the mouse brain.

18.
F1000Res ; 12: 884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635943

RESUMEN

Charged multivesicular body protein 2B is a subunit of the endosomal sorting complex required for transport III (ESRCT-III), a complex implicated in the lysosomal degradation pathway and formation of multivesicular bodies. Mutations to the CHMP2B gene can result in abnormal protein aggregates in neurons and is therefore predicted to be associated in neurodegenerative diseases, including across the ALS-FTD spectrum. Through our standardized experimental protocol which compares read-outs in knockout cell lines and isogenic parental controls, this study aims to enhance the reproducibility of research on this target by characterizing eight commercial antibodies against charged multivesicular body protein 2b using Western Blot, immunoprecipitation, and immunofluorescence. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Cuerpos Multivesiculares , Reproducibilidad de los Resultados , Western Blotting , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Anticuerpos
19.
F1000Res ; 12: 348, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37576538

RESUMEN

Profilin-1, a member of the Profilin family, is a ubiquitously expressed protein that controls actin polymerization in a concentration-dependent manner. As mutations in the Profilin-1 gene have potential implications in neurodegenerative disease progression, well-characterized anti-Profilin-1 antibodies would be beneficial to the scientific community. In this study, we characterized sixteen Profilin-1 commercial antibodies for Western blot, immunoprecipitation, and immunofluorescence applications, using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Técnica del Anticuerpo Fluorescente , Mutación , Anticuerpos/genética , Western Blotting , Inmunoprecipitación
20.
F1000Res ; 12: 308, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545650

RESUMEN

Transmembrane protein 106B (TMEM106B), a protein that is localized to the lysosome, is genetically linked to many neurodegenerative diseases and forms fibrils in diseased brains. The reproducibility of TMEM106B research would be enhanced if the community had access to well-characterized anti-TMEM106B antibodies. In this study, we characterized six commercially available TMEM106B antibodies for their performance in Western blot, immunoprecipitation, and immunofluorescence, using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. We identified many high-performing antibodies and encourage readers to use this report as a guide to select the most appropriate antibody for their specific needs.


Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Reproducibilidad de los Resultados , Western Blotting , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA