Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 45(7): 3903-3910, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022938

RESUMEN

The coastal areas and the adjacent islands are the hotspots of human economic and social activities, including urbanization, industrialization, and agricultural practices, which have profound impacts on the ecological environment of the coastal environment. Antibiotic resistance genes (ARGs), as emerging contaminants, have become hot topics in water ecological security and public concern. However, the profiles of antibiotic resistome in the costal water remain largely unknown, impeding resistome risk assessment associated with coastal environments. In this study, the high-throughput quantitative PCR technique was used to investigate the abundance and distribution of ARGs in the coastal environment of Xiamen City. Combined with the 16S rDNA gene amplicon sequencing method, the structure and composition of the microbial community in a water environment were investigated, and the influencing factors and associated mechanism of ARGs in seawater were deeply explained. The results of this study showed that a total of 187 ARGs were detected in the coastal water environment, and the abundance level was up to 1.29×1010 copies·L-1. Multidrug resistance, aminoglycosides, and ß lactamase resistance genes were the three main classes of antibiotic resistance genes in the water environment of the Xiamen coastal zone. On the whole, the profile of ARGs was of high abundance, great diversity, and common co-existence, and the coastal water environment was an important hot area and reservoir for antibiotic resistance genes. Twenty-two microbes, including Nautella, Candidatus, Tenacibaculum, Rubripirellula, and Woeseia, were potential carriers of the corresponding 16 antibiotic resistance genes. The mobile genetic elements (MGEs) and microbial community structure accounted for 93.9% of the variation in environmental resistance genes in water. Therefore, microbial community and its mobile genetic elements were the most important driving forces for the occurrence and evolution of ARGs in coastal waters. Based on the results, it is implied that the environmental antibiotic resistance genes in the waters near Xiamen Island have potential risks to water ecological security and human health and highlight the necessity for comprehensive surveillance of ARGs associated with microbial contamination in the coastal aquatic environment.


Asunto(s)
Farmacorresistencia Microbiana , Agua de Mar , China , Agua de Mar/microbiología , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente/métodos , Genes Bacterianos , Ciudades , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Antibacterianos/farmacología , Océanos y Mares , Microbiología del Agua , Farmacorresistencia Bacteriana/genética
2.
Huan Jing Ke Xue ; 45(5): 2686-2693, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629532

RESUMEN

Riparian soil is a critical area of watersheds. The characteristics of biological contaminants in riparian soil affect the pollution control of the watershed water environment. Thus, the microbial community structure, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) in the riparian soil of the Lanzhou section of the Yellow River were investigated by analyzing the characteristics of soil samples collected from farmland, mountains, and industrial land. The results showed that the Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant phyla in the riparian soil of Lanzhou section of the Yellow River. The microbial structure in the riparian soil was significantly correlated with the land use type (P < 0.05). The α diversity index of bacterial communities in land types was in the order of farmland > mountain > industry. Sulfonamide-typed ARGs were the most dominant genes in the soil of the Lanzhou section of the Yellow River Basin, among which the sul1 gene had the highest abundance, 20-36 000 times that of other detected ARGs. Moreover, the total absolute abundance of ARGs in industrial soil was the highest. Principal coordinate analysis (PCoA) displayed that the ARGs characteristics had a significant correlation with land types (P < 0.05), and intl1 and tnpA-04 drove the diffuseness of sulfonamide and tetracycline ARGs, respectively. Redundancy analysis (RDA) demonstrated that the content of inorganic salt ions and total phosphorus in the soil of the riparian zone of the Yellow River Lanzhou section were the main environmental factors, modifying the distribution of the microbial structure. Halobacterota and Acidobacteriota were the main microflora that drove the structural change in ARGs.


Asunto(s)
Antibacterianos , Suelo , Antibacterianos/análisis , Suelo/química , Genes Bacterianos , Ríos/química , Bacterias/genética , Sulfanilamida/análisis , Farmacorresistencia Microbiana/genética
3.
Huan Jing Ke Xue ; 45(2): 837-843, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471922

RESUMEN

The Yellow River water of an urban area located in the middle and lower reaches of the Yellow River was taken as the research object, in which the seasonal and along-range distribution of total culturable bacteria, typical antibiotic resistant bacteria (amoxicillin resistant bacteria and sulfamethoxazole-resistant bacteria), and their corresponding typical resistance genes ï¼»ß-lactam resistance gene (blaCTX-M) and sulfamamide resistance genes (sulI and sulⅡ), as well as intⅠ1 were investigated. The results showed that the total culturable bacteria, ß-lactam-resistant bacteria and sulfonamide-resistant bacteria in the Yellow River Basin were significantly affected by temperature and human activities. The composition and quantity of their genera had obvious spatiotemporal distribution characteristics, in which Bacillus and Pseudomonas were dominant in the composition and number of bacteria. The abundance of resistance genes decreased with the decrease in temperature. The proportion of ß-lactam resistance genes in the total genes was higher than that of sulfanilamide genes, and sulI was the dominant gene in sulfanilamide genes. Correlation analysis showed that class Ⅰ integron played an important role in accelerating the spread of resistance genes. This study offers insight into the status quo of water resistance pollution in the Yellow River and provides theoretical support for the risk assessment of resistance genes in the middle and lower reaches of the Yellow River Basin.


Asunto(s)
Ríos , Agua , Humanos , Ríos/microbiología , Antibacterianos/análisis , Bacterias/genética , Sulfametoxazol , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA