Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124254

RESUMEN

This study investigated the phytochemical characteristics, antibacterial activity, and synergistic potential of essential oils derived from Romanian lavender. Gas Chromatography-Mass Spectrometry (GC/MS) analysis revealed that linalool is the main compound in all lavender essential oils, with concentrations ranging from 29.410% to 35.769%. Linalyl acetate was found in similar concentrations to linalool. Other significant compounds included 1,8-cineole (8.50%), lavandulyl acetate (5.38%), trans-ß-ocimene (6.90%), and camphor (7.7%). A 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) test was used to assess antioxidant capacity, with substantial free-radical-scavenging activity shown in the IC50 values determined. The antibacterial efficacy of the oils was higher against Gram-positive bacteria than Gram-negative bacteria, with variations in minimum inhibitory concentrations (MICs), the extent of inhibition, and evolution patterns. The study also explored the oils' ability to enhance the efficacy of ampicillin, revealing synergistic interactions expressed as fractional inhibitory concentration indices. In silico protein-ligand docking studies used twenty-one compounds identified by GC-MS with bacterial protein targets, showing notable binding interactions with SasG (-6.3 kcal/mol to -4.6 kcal/mol) and KAS III (-6.2 kcal/mol to -4.9 kcal/mol). Overall, the results indicate that Romanian lavender essential oils possess potent antioxidant and antibacterial properties, and their synergistic interaction with ampicillin has potential for enhancing antibiotic therapies.

2.
Microorganisms ; 11(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38004802

RESUMEN

While pleuromutilin (1) and its clinically available derivatives (2-6) are highly effective against Gram-positive bacteria, they remain inactive against many pathogenic Gram-negative bacteria due to the efflux pump AcrAB-TolC. In an effort to broaden the spectrum of activity of pleuromutilin (1), we developed a series of novel pleuromutilin-polyamine conjugates (9a-f) which exhibited promising intrinsic antimicrobial properties, targeting both Gram-positive and Gram-negative bacteria, including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Escherichia coli, along with the fungal strain Cryptococcus neoformans, and were devoid of cytotoxic and hemolytic properties with the exception of one conjugate. Furthermore, this series displayed moderate to low antibiotic potentiation of legacy antibiotics doxycycline and erythromycin, with three conjugates enhancing the activity four-fold in combination with doxycycline. In comparison to pleuromutilin (1) and tiamulin (2), one of the conjugates exhibited an expanded spectrum of activity, including Gram-negative bacteria and fungi, making it a promising option for combating microbial infections.

3.
Antibiotics (Basel) ; 12(6)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37370335

RESUMEN

As part of our search for new antimicrobials and antibiotic enhancers, a series of naphthyl- and biphenyl-substituted polyamine conjugates have been synthesized. The structurally-diverse library of compounds incorporated variation in the capping end groups and in the length of the polyamine (PA) core. Longer chain (PA-3-12-3) variants containing both 1-naphthyl and 2-naphthyl capping groups exhibited more pronounced intrinsic antimicrobial properties against methicillin-resistant Staphylococcus aureus (MRSA) (MIC ≤ 0.29 µM) and the fungus Cryptococcus neoformans (MIC ≤ 0.29 µM). Closer mechanistic study of one of these analogues, 20f, identified it as a bactericide. In contrast to previously reported diarylacyl-substituted polyamines, several examples in the current set were able to enhance the antibiotic action of doxycycline and/or erythromycin towards the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli. Two analogues (19a and 20c) were of note, exhibiting greater than 32-fold enhancement in activity. This latter result suggests that α,ω-disubstituted polyamines bearing 1-naphthyl- and 2-naphthyl-capping groups are worthy of further investigation and optimization as non-toxic antibiotic enhancers.

4.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982955

RESUMEN

In this study, α-ω-disubstituted polyamines exhibit a range of potentially useful biological activities, including antimicrobial and antibiotic potentiation properties. We have prepared an expanded set of diarylbis(thioureido)polyamines that vary in central polyamine core length, identifying analogues with potent methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Acinetobacter baumannii and Candida albicans growth inhibition properties, in addition to the ability to enhance action of doxycycline towards Gram-negative bacterium Pseudomonas aeruginosa. The observation of associated cytotoxicity/hemolytic properties prompted synthesis of an alternative series of diacylpolyamines that explored aromatic head groups of varying lipophilicity. Examples bearing terminal groups each containing two phenyl rings (15a-f, 16a-f) were found to have optimal intrinsic antimicrobial properties, with MRSA being the most susceptible organism. A lack of observed cytotoxicity or hemolytic properties for all but the longest polyamine chain variants identified these as non-toxic Gram-positive antimicrobials worthy of further study. Analogues bearing either one or three aromatic-ring-containing head groups were either generally devoid of antimicrobial properties (one ring) or cytotoxic/hemolytic (three rings), defining a rather narrow range of head group lipophilicity that affords selectivity for Gram-positive bacterial membranes versus mammalian. Analogue 15d is bactericidal and targets the Gram-positive bacterial membrane.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Animales , Poliaminas/farmacología , Antibacterianos/farmacología , Bacterias , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Mamíferos
5.
Molecules ; 27(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36144649

RESUMEN

New therapeutic options to combat the growing incidence of antimicrobial resistance are urgently needed. A 2015 publication reported the isolation and biological evaluation of two diketopiperazine natural products, cyclo(l-Trp-l-Arg) (CDP 2) and cyclo(d-Trp-d-Arg) (CDP 3), from an Achromobacter sp. bacterium, finding that the latter metabolite in particular exhibited strong antibacterial activity towards a range of wound-related microorganisms and could synergize the action of ampicillin. Intrigued by these biological activities and noting inconsistencies in the structural characterization of the natural products, we synthesized the four diastereomers of cyclo(Trp-Arg) and evaluated them for antimicrobial and antibiotic enhancement properties. The detailed comparison of spectroscopic data raises uncertainty regarding the structure of CDP 2 and disproves the structure of CDP 3. In our hands, none of the four stereoisomers of cyclo(Trp-Arg) exhibited detectable intrinsic antimicrobial properties towards a range of Gram-positive and Gram-negative bacteria or fungi nor could they potentiate the action of antibiotics. These discrepancies in biological properties, compared with the activities reported in the literature, reveal that these specific cyclic dipeptides do not represent viable templates for the development of new treatments for microbial infections.


Asunto(s)
Antiinfecciosos , Productos Biológicos , Ampicilina , Antibacterianos/química , Antiinfecciosos/farmacología , Productos Biológicos/farmacología , Dicetopiperazinas/química , Dipéptidos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos/química , Estereoisomerismo , Incertidumbre
6.
Methods Mol Biol ; 1700: 293-318, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177837

RESUMEN

The resistance nodulation cell division (RND) family of proteins are inner membrane transporters that associate with periplasmic adaptor proteins and outer membrane porins to affect substrate transport from the cytosol and periplasm in Gram-negative bacteria. Various structurally diverse compounds are substrates of RND transporters. Along with their notable role in antibiotic resistance, these transporters are essential for niche colonization, quorum sensing, and virulence as well as for the removal of fatty acids and bile salts. As such, RNDs are an attractive target for antimicrobial development. However, while enhancing the utility of antibiotics with an RND inhibitor is an appealing concept, only a small core of chemotypes has been identified as efflux pump inhibitors (EPIs). Thus, our key objective is the development and validation of an efflux profiling and discovery strategy for RND model systems. Here we describe a flow cytometric dye accumulation assay that uses fluorescein diacetate (FDA) to interrogate the model Gram-negative pathogens Escherichia coli, Franscisella tularensis, and Burkholderia pseudomallei. Fluorochrome retention is increased in the presence of known efflux inhibitors and in RND deletion strains. The assay can be used in a high-throughput format to evaluate efflux of dye-substrate candidates and to screen chemical libraries for novel EPIs. Triaged compounds that inhibit efflux in pathogenic strains are tested for growth inhibition and antibiotic potentiation using microdilution culture plates in a select agent Biosafety Level-3 (BSL3) environment. This combined approach demonstrates the utility of flow cytometric analysis for efflux activity and provides a useful platform in which to characterize efflux in pathogenic Gram-negative bacteria. Screening small molecule libraries for novel EPI candidates offers the potential for the discovery of new classes of antibacterial compounds.


Asunto(s)
Antibacterianos/farmacología , Fluoresceínas/metabolismo , Bacterias Gramnegativas/crecimiento & desarrollo , Proteínas de Transporte de Membrana/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/metabolismo , Evaluación Preclínica de Medicamentos , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Citometría de Flujo , Francisella tularensis/crecimiento & desarrollo , Francisella tularensis/metabolismo , Bacterias Gramnegativas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA