Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
Nutr Rev ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181121

RESUMEN

Colorectal cancer (CRC) is a growing concern all over the world. There has been a concerted effort to identify natural bioactive compounds that can be used to prevent or overcome this condition. Tocotrienols (T3s) are a naturally occurring form of vitamin E known for various therapeutic effects, such as anticancer, antioxidant, neuroprotective, and anti-inflammatory activities. The literature evidence suggests that two T3 analogues, ie, gamma (γ)- and delta (δ)-T3, can modulate cancers via several cancer-related signaling pathways. The aim of this review was to compile and analyze the existing literature on the diverse anticancer mechanisms of γT3 and δT3 exhibited in CRC cells, to showcase the anticancer potential of T3s. Medline was searched for research articles on anticancer effects of γT3 and δT3 in CRC published in the past 2 decades. A total of 38 articles (26 cell-based, 9 animal studies, 2 randomized clinical trials, and 1 scoping review) that report anticancer effects of γT3 and δT3 in CRC were identified. The findings reported in those articles indicate that γT3 and δT3 inhibit the proliferation of CRC cells, induce cell cycle arrest and apoptosis, suppress metastasis, and produce synergistic anticancer effects when combined with well-established anticancer agents. There is preliminary evidence that shows that T3s affect telomerase functions and support anticancer immune responses. γT3 and δT3 have the potential for development as anticancer agents.

2.
Luminescence ; 39(7): e4831, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39051545

RESUMEN

For the first time, we suggest using leaf extract from Ocimum americanum as the economically viable bio-fabrication of copper nanomaterials. The residuals of leaf extract bio-capping provide the stability of the nanomaterials in-situ. UV-Vis and XRD confirmed the formation, with the UV-Vis spectrum of Cu-NMs revealing a surface plasmon resonance characteristic peak at 350 nm. FT-IR analysis was employed to examine the functional groups. FE-SEM with EDX was used to assess the morphology and carry out an elemental analysis of the nanomaterials. Diffusion and MTT assays were used to study the antimicrobial and anticancer activities. The synthesized copper nanomaterials exhibited in-vitro cytotoxicity against human skin cancer (A431) cell lines. Green nanomaterial was examined against the methylene blue dye, photodegradation was reduced by up to 90.6% within 50 minutes. The copper nanomaterials synthesized in our study exhibit promising applications in biomedicine and environmental pollution research.


Asunto(s)
Proliferación Celular , Cobre , Cobre/química , Cobre/farmacología , Humanos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Nanoestructuras/química , Tecnología Química Verde , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas del Metal/química , Luminiscencia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Hojas de la Planta/química , Antibacterianos/farmacología , Antibacterianos/química , Tamaño de la Partícula , Pruebas de Sensibilidad Microbiana , Sustancias Luminiscentes/química , Sustancias Luminiscentes/farmacología , Sustancias Luminiscentes/síntesis química
3.
Heliyon ; 10(12): e32954, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994074

RESUMEN

Jazan Industrial Economic City (JIEC) is located on the Red Sea coast in the province of Jazan, southwest of Saudi Arabia anchors diverse heavy and secondary industries in the energy, water desalination, petroleum, aluminum, copper, refineries, pharmaceuticals and food manufacturing fields. These various industries generate a large quantity of industrial wastewaters containing various toxicants. The present work represents ecologically beneficial alternatives for the advancement of environmental biotechnology, which could help mitigate the adverse impacts of environmental pollution resulting from petroleum refining effluents. The mycobiome (32 fungal strains) isolated from the industrial wastewater of the refinery sector in Jazan were belonged to five fungal genera including Fusarium, Verticillium, Purpureocillium, Clavispora and Scedosporium with a distribution percentage of 31.25, 21.88, 15.63, 12.50 and 18.75 %, respectively. These isolates showed multimetals tolerance and bioremoval efficiency against a large number of heavy metals (Fe2+, Ni2+, Cr6+, Zn2+, As3+, Cu2+, Cd2+, Pb2+, Ag+ and Hg2+) along with potent bioremediation activity toward crude oil and the polycyclic aromatic hydrocarbons. Interestingly, the mycobiome resistance patterns obtained against different classes of fungal antibiotics including azole (fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole and ketoconazole), echinocandin (anidulafungin, caspofungin and micafungin) and polyene (amphotericin B) drugs proved the prevalence of antibiotic resistance among the mycobiome of refinery industry in Saudi Arabia is relatively low. The fungal isolate under isolation code JAZ-20 showed the highest bioremoval efficiency against heavy metals (90.8-100.0 %), crude oil (89.50 %), naphthalene (96.7 %), phenanthrene (92.52 %), fluoranthene (100.0 %), anthracene (90.34 %), pyrene (85.60 %) and chrysene (83.4 %). It showed the highest bioremoval capacity ranging from 85.72 % to 100.0 % against numerous pollutants found in a wide array of industrial effluents, including diclofenac, ibuprofen, carbamazepine, acetaminophen, sulfamethoxazole, bisphenol, bleomycin, vincristine, dicofol, methyl parathion, atrazine, diuron, dieldrin, chlorpyrifos, profenofos and phenanthrene. The isolate JAZ-20 was chosen for molecular typing, cytotoxicity assessment, analysis of volatile compounds and optimization investigations. Based on phenotypic, biochemical and phylogenetic analysis, strain JAZ-20 identified as Scedosporium apiospermum JAZ-20. This strain is newly discovered in industrial effluents in Saudi Arabia. Fungal strain JAZ-20 consistently produced various types of saturated and unsaturated fatty acids. the main fatty acids were C14:0 (1.95 %), iso-C14:0 (2.98 %), anteiso-C14:0 (2.13 %), iso-C15:0 (9.16 %), anteiso-C15:0 (11.75 %), C15:0 (7.42 %), C15:1 (2.37 %), anteiso-C16:0 (3.4 %), C16:0 (10.3 %), iso-C16:0 (9.5 %), C17:1 (1.36 %), anteiso-C17:1 (8.64 %), iso-C18:0 (11.0 %), C18:0 (3.63 %), anteiso-C19:0 (3.78 %), anteiso-C20:0 (2.0 %), iso-C21:0 (2.44 %), C23:0 (1.15 %), and C24:0 (2.17 %). These fatty acids serve as natural and eco-friendly antifungal agents, promoting fungal resistance and inhibiting the production of mycotoxins in the environment. Despite being an environmental isolate, its cytotoxicity was assessed against both normal and cancerous human cell lines. The IC50 values of JAZ-20 extract were 8.92, 10.41, 20.0, 16.5, and 40.0 µg/mL against WI38, MRC5, MCF10A, HEK293 and HDFs normal cells and 43.26, 33.75, and 40.0 µg/mL against liver (HepG2), breast (A549) and cervix (HeLa) cancers, respectively. Based on gas chromatography-mass spectrometry (GC-MS), analysis the extract of S. apiospermum JAZ-20 showed 47 known volatile compounds (VOCs) for varied and significant biological activities. Enhancing the bioremoval efficiency of heavy metals from actual refining wastewater involves optimizing process parameters. The parameters optimized were the contact time, the fungal biomass dosage, pH, temperature and agitation rate.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38988166

RESUMEN

BACKGROUND: With conventional cancer treatments facing limitations, interest in plant-derived natural products as potential alternatives is increasing. Although resveratrol has demonstrated antitumor effects in various cancers, its impact and mechanism on nasopharyngeal carcinoma remain unclear. OBJECTIVE: This study aimed to systematically investigate the anti-cancer effects of resveratrol on nasopharyngeal carcinoma using a combination of experimental pharmacology, network pharmacology, and molecular docking approaches. METHODS: CCK-8, scratch wound, and transwell assays were employed to confirm the inhibitory effect of resveratrol on the proliferation, migration, and invasion of nasopharyngeal carcinoma cells. H&E and TUNEL stainings were used to observe the morphological changes and apoptosis status of resveratrol-treated cells. The underlying mechanisms were elucidated using a network pharmacology approach. Immunohistochemistry and Western blotting were utilized to validate key signaling pathways. RESULTS: Resveratrol inhibited the proliferation, invasion, and migration of nasopharyngeal carcinoma cells, ultimately inducing apoptosis in a time- and dose-dependent manner. Network pharmacology analysis revealed that resveratrol may exert its anti-nasopharyngeal carcinoma effect mainly through the MAPK pathway. Immunohistochemistry results from clinical cases showed MAPK signaling activation in nasopharyngeal carcinoma tissues compared to adjacent tissues. Western blotting validated the targeting effect of resveratrol, demonstrating significant inhibition of the MAPK signaling pathway. Furthermore, molecular docking supported its multi-target role with MAPK, TP53, PIK3CA, SRC, etc. Conclusion: Resveratrol has shown promising potential in inhibiting human nasopharyngeal carcinoma cells by primarily targeting the MAPK pathway. These findings position resveratrol as a potential therapeutic agent for nasopharyngeal carcinoma.

5.
Bioorg Chem ; 151: 107661, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39067422

RESUMEN

SHP2 (Src homology-2-containing protein tyrosine phosphatase 2) plays an important role in cell proliferation, survival, migration by affecting RAS-ERK, PI3K-AKT, JAK-STAT signaling pathways and so on. Overexpression or gene mutation of SHP2 is closely linked with a variety of cancers, making it a potential therapeutic target for cancer disease. In this paper, 30 target compounds bearing pyrido[1,2-a]pyrimidin-4-one core were synthesized via two-round design strategy by means of scaffold hopping protocol. It was evaluated the in vitro enzymatic inhibition and cell antiproliferation assay of these targets. 13a, designed in the first round, presented relatively good inhibitory activity, but its molecular rigidity might limit further improvement by hindering the formation of the desired "bidentate ligand", as revealed by molecular docking studies. In our second-round design, S atom as a linker was inserted into the core and the 7-aryl group to enhance the flexibility of the structure. The screening result revealed that 14i could exhibit high enzymatic activity against full-length SHP2 (IC50 = 0.104 µM), while showing low inhibitory effect on SHP2-PTP (IC50 > 50 µM). 14i also demonstrated high antiproliferative activity against the Kyse-520 cells (IC50 = 1.06 µM) with low toxicity against the human brain microvascular endothelial cells HBMEC (IC50 = 30.75 µM). 14i also displayed stronger inhibitory activities on NCI-H358 and MIA-PaCa2 cells compared to that of SHP099. Mechanistic studies revealed that 14i could induce cell apoptosis, arrest the cell cycle at the G0/G1 phase and downregulate the phosphorylation levels of Akt and Erk1/2 in Kyse-520 cells. Molecular docking and molecular dynamics studies displayed more detailed information on the binding mode and binding mechanism of 14i and SHP2. These data suggest that 14i has the potential to be a promising lead compound for our further investigation of SHP2 inhibitors.


Asunto(s)
Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Regulación Alostérica/efectos de los fármacos , Pirimidinonas/farmacología , Pirimidinonas/síntesis química , Pirimidinonas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/química , Piridinas/farmacología , Piridinas/química , Piridinas/síntesis química
6.
Heliyon ; 10(11): e32483, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38933967

RESUMEN

Ginsenoside Rd is a tetracyclic triterpenoid derivative, widely existing in Panax ginseng, Panax notoginseng and other traditional Chinese medicines. Many studies have proved that ginsenoside Rd have a variety of significant biological activities on certain types of cancer. However, the mechanism of ginsenoside Rd remains unclear in lung cancer. The findings of this study reveal that GS-Rd inhibits the proliferation of NSCLC cells, induces apoptosis, and suppresses migration and invasion. The results showed Ginsenoside Rd inhibited the cell proliferation (∼99.52 %) by S phase arrest in cell cycle and promoted the apoptosis (∼54.85 %) of NSCLC cells. It also inhibited the migration and invasion of cells (p < 0.001). The expression levels of related mitochondrial apoptosis proteins (Bax/Bcl-2/Cytochrome C) and matrix metalloproteinases (MMP-2/-9) were significantly changed. The results showed that ginsenoside Rd inhibited the proliferation of tumor cells by activating p53/bax-mediated mitochondrial apoptosis and the expression of key enzymes for cell apoptosis caspase-3/cleaved-caspase-3 were significantly increased. This research contributes to a better understanding of the anti-tumor effects and molecular mechanisms of GS-Rd, paving the way for its potential development and clinical application in NSCLC therapy.

7.
Cancers (Basel) ; 16(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38927944

RESUMEN

Mortalin, a member of the Hsp70 family of proteins, is commonly enriched in many types of cancers. It promotes carcinogenesis and metastasis in multiple ways of which the inactivation of the tumor suppressor activity of p53 has been firmly established. The downregulation of mortalin and/or disruption of mortalin-p53 interactions by small molecules has earlier been shown to activate p53 function yielding growth arrest/apoptosis in cancer cells. Mortaparibs (Mortaparib, MortaparibPlus, and MortaparibMild) are chemical inhibitors of mortalin isolated by cell-based two-way screening involving (i) a shift in the mortalin staining pattern from perinuclear (characteristics of cancer cells) to pancytoplasmic (characteristics of normal cells) and (ii) the nuclear enrichment of p53. They have similar structures and also cause the inhibition of PARP1 and hence were named Mortaparibs. In the present study, we report the anticancer and anti-metastasis activity of MortaparibMild (4-[(4-amino-5-thiophen-2-yl-1,2,4-triazol-3-yl)sulfanylmethyl]-N-(4-methoxyphenyl)-1,3-thiazol-2-amine) in p53-null cells. By extensive molecular analyses of cell proliferation, growth arrest, and apoptosis pathways, we demonstrate that although it causes relatively weaker cytotoxicity compared to Mortaparib and MortaparibPlus, its lower concentrations were equally potent to inhibit cell migration. We developed combinations (called MortaparibMix-AP, MortaparibMix-AM, and MortaparibMix-AS) consisting of different ratios of three Mortaparibs for specifically enhancing their anti-proliferation, anti-migration, and antistress activities, respectively. Based on the molecular analyses of control and treated cells, we suggest that the three Mortaparibs and their mixtures may be considered for further laboratory and clinical studies validating their use for the treatment of cancer as well as prevention of its relapse and metastasis.

8.
Mar Drugs ; 22(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921588

RESUMEN

Two new meroterpenoids, aspergienynes O and P (1 and 2), one new natural compound, aspergienyne Q (3), and a new α-pyrone derivative named 3-(4-methoxy-2-oxo-2H-pyran-6-yl)butanoic acid (4) were isolated from the mangrove endophytic fungal strain Aspergillus sp. GXNU-Y85, along with five known compounds (5-9). The absolute configurations of those new isolates were confirmed through extensive analysis using spectroscopic data (HRESIMS, NMR, and ECD). The pharmacological study of the anti-proliferation activity indicated that isolates 5 and 9 displayed moderate inhibitory effects against HeLa and A549 cells, with the IC50 values ranging from 16.6 to 45.4 µM.


Asunto(s)
Aspergillus , Pironas , Terpenos , Aspergillus/química , Humanos , Pironas/farmacología , Pironas/química , Pironas/aislamiento & purificación , Terpenos/farmacología , Terpenos/química , Terpenos/aislamiento & purificación , Células A549 , Células HeLa , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Estructura Molecular , Endófitos/química , Concentración 50 Inhibidora , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Espectroscopía de Resonancia Magnética
9.
Phytochemistry ; 223: 114133, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710375

RESUMEN

Five undescribed elesesterpenes L-U, along with nine known 3,4-seco-lupane-type triterpenoids were isolated from the leaves of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S. Y. Hu. Elesesterpene L-S, and U were lupane-type triterpenoids, whereas elesesterpene T was an oleanane-type triterpenoid, probably artifact, as suggested by LC-MS analysis. Out of the nine known compounds, five were initially identified in E. sessiliflorus. Moreover, their structures were definitively determined using spectroscopic analyses, and the absolute configurations of elesesterpenes L-M and sachunogenin 3-O-glucoside were clarified using X-ray crystallographic techniques. The absolute configuration of elesesterpene T was determined by measuring and calculating its ECD. In addition, all compounds were tested to examine their ability to inhibit the proliferation of HFLS-RA cells induced by TNF-α in vitro. Elesesterpene M, chiisanogenin, chiisanoside, and 3-methylisochiisanoside significantly inhibited HFLS-RA proliferation.


Asunto(s)
Eleutherococcus , Hojas de la Planta , Triterpenos , Eleutherococcus/química , Hojas de la Planta/química , Factor de Necrosis Tumoral alfa/farmacología , Humanos , Triterpenos/análisis , Triterpenos/aislamiento & purificación , Triterpenos/farmacología , Células Cultivadas , Análisis Espectral , Proliferación Celular/efectos de los fármacos
10.
Molecules ; 29(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611855

RESUMEN

Quinoa, known as the "golden grain" for its high nutritional value, has polysaccharides as one of its sources of important nutrients. However, the biological functions of quinoa polysaccharides remain understudied. In this study, two crude polysaccharide extracts of quinoa (Q-40 and Q-60) were obtained through sequential precipitation with 40% and 60% ethanol, with purities of 58.29% (HPLC) and 62.15% (HPLC) and a protein content of 8.27% and 9.60%, respectively. Monosaccharide analysis revealed that Q-40 contained glucose (Glc), galacturonic acid (GalA), and arabinose (Ara) in a molar ratio of 0.967:0.027:0.006. Q-60 was composed of xylose (xyl), arabinose (Ara), galactose, and galacturonic acid (GalA) with a molar ratio of 0.889:0.036:0.034:0.020. The average molecular weight of Q-40 ranged from 47,484 to 626,488 Da, while Q-60 showed a range of 10,025 to 47,990 Da. Rheological experiments showed that Q-40 exhibited higher viscosity, while Q-60 demonstrated more elastic properties. Remarkably, Q-60 showed potent antioxidant abilities, with scavenging rates of 98.49% for DPPH and 57.5% for ABTS. Antibacterial experiments using the microdilution method revealed that Q-40 inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), while Q-60 specifically inhibited MRSA. At lower concentrations, both polysaccharides inhibited MDA (MD Anderson Cancer Center) cell proliferation, but at higher concentrations, they promoted proliferation. Similar proliferation-promoting effects were observed in HepG2 cells. The research provides important information in the application of quinoa in the food and functional food industries.


Asunto(s)
Chenopodium quinoa , Ácidos Hexurónicos , Staphylococcus aureus Resistente a Meticilina , Arabinosa , Escherichia coli , Grano Comestible
11.
Front Pharmacol ; 15: 1359632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606171

RESUMEN

Camellia oleifera is a medicine food homology plant widely cultivated in the Yangtze River Basin and southern China due to its camellia oil. Camellia oleifera bud and fruit exist simultaneously, and its bud is largely discarded as waste. However, C. oleifera bud has been used in traditional Chinese medicine to treat a variety of ailments. Thus, the purpose of this study was to identify the chemical components of C. oleifera bud ethanol extract (EE) and first evaluate its anticancer effects in non-small cell lung cancer A549 cells. Based on UHPLC-Q-Orbitrap-MS analysis, seventy components were identified. For anticancer activity, C. oleifera bud EE had remarkable cytotoxic effect on non-small cell lung cancer A549 (IC50: 57.53 ± 1.54 µg/mL) and NCI-H1299 (IC50: 131.67 ± 4.32 µg/mL) cells, while showed lower cytotoxicity on non-cancerous MRC-5 (IC50 > 320 µg/mL) and L929 (IC50: 179.84 ± 1.08 µg/mL) cells. It dramatically inhibited the proliferation of A549 cells by inducing cell cycle arrest at the G1 phase. Additionally, it induced apoptosis in A549 cells through a mitochondria-mediated pathway, which decreased mitochondrial membrane potential, upregulated Bax, activated caspase 9 and caspase 3, and resulted in PARP cleavage. Wound healing and transwell invasion assays demonstrated that C. oleifera bud EE inhibited the migration and invasion of A549 cells in a dose-dependent manner. The above findings indicated that C. oleifera bud EE revealed notable anticancer effects by inhibiting proliferation, inducing apoptosis, and suppressing migration and invasion of A549 cells. Hence, C. oleifera bud ethanol extract could serve as a new source of natural anticancer drugs.

12.
Sci Rep ; 14(1): 6515, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499634

RESUMEN

Human pancreatic ductal adenocarcinoma (PDAC) is a highly malignant and lethal tumor of the exocrine pancreas. Cannabinoids extracted from the hemp plant Cannabis sativa have been suggested as a potential therapeutic agent in several human tumors. However, the anti-tumor effect of cannabinoids on human PDAC is not entirely clarified. In this study, the anti-proliferative and apoptotic effect of cannabinoid solution (THC:CBD at 1:6) at a dose of 1, 5, and 10 mg/kg body weight compared to the negative control (sesame oil) and positive control (5-fluorouracil) was investigated in human PDAC xenograft nude mice model. The findings showed that cannabinoids significantly decreased the mitotic cells and mitotic/apoptotic ratio, meanwhile dramatically increased the apoptotic cells. Parallelly, cannabinoids significantly downregulated Ki-67 and PCNA expression levels. Interestingly, cannabinoids upregulated BAX, BAX/BCL-2 ratio, and Caspase-3, meanwhile, downregulated BCL-2 expression level and could not change Caspase-8 expression level. These findings suggest that cannabinoid solution (THC:CBD at 1:6) could inhibit proliferation and induce apoptosis in human PDAC xenograft models. Cannabinoids, including THC:CBD, should be further studied for use as the potent PDCA therapeutic agent in humans.


Asunto(s)
Cannabinoides , Cannabis , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Ratones Desnudos , Xenoinjertos , Proteína X Asociada a bcl-2 , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2
13.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542474

RESUMEN

Diarylpentanoids are synthesized to overcome curcumin's poor bioavailability and low stability to show enhanced anti-cancer effects. Little is known about the anti-cancer effects of diarylpentanoid MS17 (1,5-bis(2-hydroxyphenyl)-1,4-pentadiene-3-one) in colon cancer cells. This study aimed to elucidate molecular mechanisms and pathways modulated by MS17 in colon cancer based on proteomic profiling of primary SW480 and metastatic SW620 colon cancer cells. Cytotoxicity and apoptotic effects of MS17 were investigated using MTT assay, morphological studies, and Simple Western analysis. Proteomic profiling using LC/MS analysis identified differentially expressed proteins (DEPs) in MS17-treated cells, with further analysis in protein classification, gene ontology enrichment, protein-protein interaction network and Reactome pathway analysis. MS17 had lower EC50 values (SW480: 4.10 µM; SW620: 2.50 µM) than curcumin (SW480: 17.50 µM; SW620: 13.10 µM) with a greater anti-proliferative effect. MS17 treatment of 1× EC50 induced apoptotic changes in the morphology of SW480 and SW620 cells upon 24 h treatment. A total of 24 and 92 DEPs (fold change ≥ 1.50) were identified in SW480 and SW620 cells, respectively, upon MS17 treatment of 2× EC50 for 24 h. Pathway analysis showed that MS17 may induce its anti-cancer effects in both cells via selected DEPs associated with the top enriched molecular pathways. RPL and RPS ribosomal proteins, heat shock proteins (HSPs) and ubiquitin-protein ligases (UBB and UBC) were significantly associated with cellular responses to stress in SW480 and SW620 cells. Our findings suggest that MS17 may facilitate the anti-proliferative and apoptotic activities in primary (SW480) and metastatic (SW620) human colon cancer cells via the cellular responses to stress pathway. Further investigation is essential to determine the alternative apoptotic mechanisms of MS17 that are independent of caspase-3 activity and Bcl-2 protein expression in these cells. MS17 could be a potential anti-cancer agent in primary and metastatic colon cancer cells.


Asunto(s)
Alcadienos , Neoplasias del Colon , Curcumina , Humanos , Curcumina/farmacología , Proteómica , Apoptosis , Línea Celular Tumoral , Neoplasias del Colon/metabolismo
14.
Fitoterapia ; 174: 105872, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417681

RESUMEN

A total of 19 resveratrol derivatives, including 12 imines and 7 amines, were synthesized, among which compounds 1, 5, 6, 7', 11', and 13 are new compounds. The anti-inflammatory and antitumor activities of these compounds were evaluated in vitro. The results revealed that compounds 1, 6, 8', 12, and 12' exhibited significant inhibitory effects (> 50%) on NO production at the concentration of 10 µM and their NO production inhibitory activities have a significant concentration-dependent ability. Additionally, compounds 8' and 12' showed promising COX-2 inhibitory activity, and the molecular docking analysis indicated their stable binding to multiple amino acid residues within the active pocket of COX-2 through hydrogen bonding. Moreover, compound 12' exhibited inhibitory effects on various tumor cell lines and induced apoptosis in MCF-7 breast cancer cells, which was not observed with resveratrol alone. Therefore, the N-substituted structural modification of resveratrol would have possibly enhanced the bioactivity of resveratrol and facilitated its application.


Asunto(s)
Antineoplásicos , Humanos , Estructura Molecular , Relación Estructura-Actividad , Resveratrol/farmacología , Simulación del Acoplamiento Molecular , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Diseño de Fármacos
15.
Fitoterapia ; 174: 105874, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417684

RESUMEN

Five new sesquiterpenoids, dictamtrinorguaianols E and F (1-2), and dictameudesmnosides F, G, and H (3-5), along with seven known sesquiterpenoids (6-12) were isolated from Dictamnus dasycarpus Turcz. The structures of all new compounds were characterized by spectroscopic methods, including UV, IR, HR-ESI-MS, and 1D and 2D NMR. The In-vitro anti-proliferative activities of all the compounds against two human cancer cell lines (SW982 and A549) were evaluated by CCK-8 assay. Compounds 1 and 4 showed medium anti-proliferative activity against SW982 cells, with IC50 values of 3.49 ± 0.10 and 6.42 ± 1.23 µM, respectively. Additionally, compounds 2, 7, and 8 exhibited medium anti-proliferative activity against A549 cells, with IC50 values ranging from 0.80 ± 0.05 to 6.60 ± 0.46 µM.


Asunto(s)
Dictamnus , Sesquiterpenos , Humanos , Dictamnus/química , Estructura Molecular , Línea Celular , Espectroscopía de Resonancia Magnética , Sesquiterpenos/farmacología
16.
J Steroid Biochem Mol Biol ; 239: 106483, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38369033

RESUMEN

Beauvericin (BEA) is a cyclic depsipeptide secondary metabolite of Fusarium species. It causes chemical hazards in food products and exists in an environment containing soil and various food types. On the other hand, the purified BEA has various biological activities and is regarded as a potential candidate for pharmaceutical research. This study was performed to assess the anti-proliferation activity of BEA against human breast cancer cells by regulating the estrogen receptor-alpha (ERα)/p38 pathway. TA and BA assays verified that BEA is a completed ER antagonist. Additionally, BEA suppressed cell proliferation in the anti-proliferation assay involving ER-positive human breast cancer cells co-treated with BPA and BEA. In respect to an anti-proliferation activity, the BPA-induced phosphorylation of p38 protein was inhibited in the presence of BEA. These results suggested that BEA exerts inhibitory potentials on endocrine disrupting effect and possibly acts as a natural therapeutic material for human estrogen hormonal health.


Asunto(s)
Compuestos de Bencidrilo , Neoplasias de la Mama , Depsipéptidos , Fusarium , Fenoles , Humanos , Femenino , Receptor alfa de Estrógeno/metabolismo , Fusarium/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Depsipéptidos/farmacología , Depsipéptidos/metabolismo , Proliferación Celular , Línea Celular , Línea Celular Tumoral
17.
J Biochem Mol Toxicol ; 38(2): e23642, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348710

RESUMEN

Breast cancer is the leading cause of cancer deaths in women worldwide. EF-24, an analog of curcumin, has been shown to possess promising anticancer effects. However, the underlying mechanism remains elusive. In the present study, the inhibitory effect of EF-24 against one breast cancer cell line, MDA-MB-231, and its anti-migration ability were assessed by MTT, wound healing, and Transwell assay. Furthermore, we found that EF-24 could induce initiation of autophagy as evidenced by fluorescence and electron microscope observation. EF-24 also induced mitochondrial apoptosis in MDA-MB-231 cells as detected by Hoechst 33342 staining, flow cytometry analysis, and western blot analysis. In addition, the early autophagy inhibitor 3-MA could reduce the cleavage of PARP protein and protect cells from EF-24-induced apoptosis, while the autophagy inducer (rapamycin) could enhance the anticancer effect of EF-24 in MDA-MB-231 cells, which suggest that EF-24 induces crosstalk between autophagy and apoptosis, which herein participate in the antiproliferative effect of EF-24 in breast cancer cells. Moreover, removal of EF-24-activated ROS with NAC significantly reversed migration ability of MDA-MB-231 cells, indicating that EF-24 exerted an inhibitory effect through a ROS-mediating pathway. These results will help to elucidate the antitumor mechanism of curcumin analogs and to explore future potential clinical applications.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Curcumina , Femenino , Humanos , Curcumina/farmacología , Curcumina/uso terapéutico , Células MDA-MB-231 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular , Neoplasias de la Mama/patología , Autofagia , Apoptosis , Línea Celular Tumoral
18.
BMC Complement Med Ther ; 24(1): 59, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281034

RESUMEN

BACKGROUND: Cervical cancer is a major global health concern with a high prevalence in low- and middle-income countries. Natural products, particularly plant-derived compounds, have shown immense potential for developing anticancer drugs. In this study, we aimed to investigate the anticancer properties of the pericarp and seeds of Sphaerocoryne affinis fruit on human cervical carcinoma cells (HeLa) and isolate the bioactive compound from the active fraction. METHODS: We prepared solvent fractions from the ethanol extracts of the pericarp and the seed portion by partitioning and assessing their cytotoxicity on HeLa cells. Subsequently, we collected acetylmelodorinol (AM), an anticancer compound, from the ethyl acetate fraction of seeds and determined its structure using nuclear magnetic resonance. We employed cytotoxicity assay, western blotting, Annexin V apoptosis assay, measurement of intracellular reactive oxygen species (ROS) levels, 4',6-diamidino-2-phenylindole (DAPI) staining, and a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, to evaluate the anticancer properties of AM on HeLa. RESULTS: The solvent fractions from the seed displayed considerably higher cytotoxic activity against HeLa cells than those of the pericarp. We isolated and identified acetylmelodorinol as an anticancer compound from the ethyl acetate fraction from S. affinis seed extract. Treatment with acetylmelodorinol inhibited HeLa cell proliferation with an IC50 value of 2.62 ± 0.57 µg/mL. Furthermore, this study demonstrated that acetylmelodorinol treatment disrupted cell cycle progression by reducing the expression of cyclin E, CDK1/2, and AKT/mTOR pathways, increasing the intracellular ROS levels, reducing BCL-2/BCL-XL expression, causing DNA fragmentation and nuclear shrinkage, and triggering apoptosis through caspase 3 and 9 activation in a dose-and time-dependent manner. CONCLUSION: In contrast to previous reports, this study focuses on the inhibitory effects of AM on the AKT/mTOR pathway, leading to a reduction in cell proliferation in cervical cancer cells. Our findings highlight the promising potential of acetylmelodorinol as an effective treatment for cervical cancer. Additionally, this study establishes a foundation for investigating the molecular mechanisms underlying AM's properties, fostering further exploration into plant-based cancer therapies.


Asunto(s)
Acetatos , Proteínas Proto-Oncogénicas c-akt , Neoplasias del Cuello Uterino , Femenino , Humanos , Células HeLa , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Apoptosis , Proliferación Celular , Serina-Treonina Quinasas TOR , Semillas , Solventes/farmacología , Solventes/uso terapéutico
19.
Nat Prod Res ; : 1-8, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38232058

RESUMEN

Two new quinoline alkaloids (1-2) together with twenty-two known alkaloids (3-24) were isolated and identified from Dictamnus dasycarpus Turcz. Compounds 6-7, 9, 11, 15-16, 19 and 24 were isolated from D. dasycarpus for the first time. The structures of all compounds were characterised by spectroscopic methods (1D, 2D NMR and HRESIMS). The anti-proliferative activity was mediated by the arrest of three human cancer cell lines (SW982, HepG2 and A549) of all the compounds that were evaluated by CCK-8 assay.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38185893

RESUMEN

BACKGROUND: Receptor tyrosine kinases (RTKs) are potent oncoproteins in cancer that, when mutated or overexpressed, can cause uncontrolled growth of cells, angiogenesis, and metastasis, making them significant targets for cancer treatment. Vascular endothelial growth factor receptor 2 (VEGFR2), is a tyrosine kinase receptor that is produced in endothelial cells and is the most crucial regulator of angiogenic factors involved in tumor angiogenesis. So, a series of new substituted N-(4-((2-aminopyrimidin-5-yl)oxy)phenyl)-N-phenyl cyclopropane1,1-dicarboxamide derivatives as VEGFR-2 inhibitors have been designed and synthesized. METHODS: Utilizing H-NMR, C13-NMR, and mass spectroscopy, the proposed derivatives were produced and assessed. HT-29 and COLO-205 cell lines were used for the cytotoxicity tests. The effective compound was investigated further for the Vegfr-2 kinase inhibition assay, cell cycle arrest, and apoptosis. A molecular docking examination was also carried out with the Maestro-12.5v of Schrodinger. RESULTS: In comparison to the reference drug Cabozantinib (IC50 = 9.10 and 10.66 µM), compound SP2 revealed promising cytotoxic activity (IC50 = 4.07 and 4.98 µM) against HT-29 and COLO-205, respectively. The synthesized compound SP2 showed VEGFR-2 kinase inhibition activity with (IC50 = 6.82 µM) against the reference drug, Cabozantinib (IC50 = 0.045 µM). Moreover, compound SP2 strongly induced apoptosis by arresting the cell cycle in the G1 phase. The new compounds' potent VEGFR-2 inhibitory effect was noted with key amino acids Asp1044, and Glu883, and the hydrophobic interaction was also observed in the pocket of the VEGFR-2 active site by using a docking study. CONCLUSION: The results demonstrate that at the cellular and enzyme levels, the synthetic compounds SP2 are similarly effective as cabozantinib. The cell cycle and apoptosis data demonstrate the effectiveness of the suggested compounds. Based on the findings of docking studies, cytotoxic effects, in vitro VEGFR-2 inhibition, apoptosis, and cell cycle arrest, this research has given us identical or more effective VEGFR-2 inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA