Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Reprod ; 110(1): 90-101, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37774351

RESUMEN

Mammalian ovulation is induced by a luteinizing hormone surge, which is triggered by elevated plasma estrogen levels; however, chronic exposure to high levels of estradiol is known to inhibit luteinizing hormone secretion. In the present study, we hypothesized that the inhibition of the luteinizing hormone surge by chronic estradiol exposure is due to the downregulation of the estrogen receptor alpha in kisspeptin neurons at hypothalamic anteroventral periventricular nucleus, which is known as the gonadotropin-releasing hormone/luteinizing hormone surge generator. Animals exposed to estradiol for 2 days showed an luteinizing hormone surge, whereas those exposed for 14 days showed a significant suppression of luteinizing hormone. Chronic estradiol exposure did not affect the number of kisspeptin neurons and the percentage of kisspeptin neurons with estrogen receptor alpha or c-Fos in anteroventral periventricular nucleus, but it did affect the number of kisspeptin neurons in arcuate nucleus. Furthermore, chronic estradiol exposure did not affect gonadotropin-releasing hormone neurons. In the pituitary, 14-day estradiol exposure significantly reduced the expression of Lhb mRNA and LHß-immunoreactive areas. Gonadotropin-releasing hormone-induced luteinizing hormone release was also reduced significantly by 14-day estradiol exposure. We revealed that the suppression of an luteinizing hormone surge by chronic estradiol exposure was induced in association with the significant reduction in kisspeptin neurons in arcuate nucleus, luteinizing hormone expression in the pituitary, and pituitary responsiveness to gonadotropin-releasing hormone, and this was not caused by changes in the estrogen receptor alpha-expressing kisspeptin neurons in anteroventral periventricular nucleus and gonadotropin-releasing hormone neurons, which are responsible for estradiol positive feedback.


Asunto(s)
Estradiol , Hormona Luteinizante , Femenino , Animales , Hormona Luteinizante/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo Anterior/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Neuronas/metabolismo , Mamíferos/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 951938, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36479214

RESUMEN

Feedback from oestradiol (E2) plays a critical role in the regulation of major events in the physiological menstrual cycle including the release of gonadotrophins to stimulate follicular growth, and the mid-cycle luteinising hormone (LH) surge that leads to ovulation. E2 predominantly exerts its action via oestrogen receptor-alpha (ERα), however, as gonadotrophin releasing hormone (GnRH) neurons lack ERα, E2-feedback is posited to be indirectly mediated via upstream neurons. Kisspeptin (KP) is a neuropeptide expressed in hypothalamic KP-neurons that control GnRH secretion and plays a key role in the central mechanism regulating the hypothalamic-pituitary-gonadal (HPG) axis. In the rodent arcuate (ARC) nucleus, KP is co-expressed with Neurokinin B and Dynorphin; and thus, these neurons are termed 'Kisspeptin-Neurokinin B-Dynorphin' (KNDy) neurons. ARC KP-neurons function as the 'GnRH pulse generator' to regulate GnRH pulsatility, as well as mediating negative feedback from E2. A second KP neuronal population is present in the rostral periventricular area of the third ventricle (RP3V), which includes anteroventral periventricular (AVPV) nucleus and preoptic area neurons. These RP3V KP-neurons mediate positive feedback to induce the mid-cycle luteinising hormone (LH) surge and subsequent ovulation. Here, we describe the role of KP-neurons in these two regions in mediating this differential feedback from oestrogens. We conclude by considering reproductive diseases for which exploitation of these mechanisms could yield future therapies.


Asunto(s)
Kisspeptinas , Neuroquinina B , Dinorfinas , Hormona Luteinizante , Hormona Liberadora de Gonadotropina , Neuronas
3.
Endocrinology ; 163(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35789268

RESUMEN

Luteinizing hormone (LH) secretion during the ovarian cycle is governed by fluctuations in circulating estradiol (E2) that oppositely regulate kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) of the hypothalamus. However, how these effects are orchestrated to achieve fertility is unknown. Here, we have tested the hypothesis that AVPV and ARC neurons have different sensitivities to E2 to coordinate changes in LH secretion. Cycling and ovariectomized rats with low and high E2 levels were used. As an index of E2 responsiveness, progesterone receptor (PR) was expressed only in the AVPV of rats with high E2, showing the preovulatory LH surge. On the other hand, kisspeptin neurons in the ARC responded to low E2 levels sufficient to suppress LH release. Notably, the Esr1/Esr2 ratio of gene expression was higher in the ARC than AVPV, regardless of E2 levels. Accordingly, the selective pharmacological activation of estrogen receptor α (ERα) required lower doses to induce PR in the ARC. The activation of ERß, in turn, amplified E2-induced PR expression in the AVPV and the LH surge. Thus, ARC and AVPV neurons are differently responsive to E2. Lower E2 levels activate ERα in the ARC, whereas ERß potentiates the E2 positive feedback in the AVPV, which appears related to the differential Esr1/Esr2 ratio in these 2 brain areas. Our findings provide evidence that the distinct expression of ER isoforms in the AVPV and ARC plays a key role in the control of periodic secretion of LH required for fertility in females.


Asunto(s)
Estradiol , Kisspeptinas , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Estradiol/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Receptores de Estrógenos/metabolismo
4.
Reprod Toxicol ; 110: 141-149, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35429613

RESUMEN

Bisphenol A (BPA) is ubiquitous in the environment and its adverse effects on precocious puberty have been reported. But its mechanism is not clear. In the present study, the potential effects of BPA on endocrine functions of hypothalamus, especially in the arcuate (ARC) nucleus and anteroventral periventricular (AVPe) nucleus, were studied from postnatal day 15 (PND15) to PND35 in female Sprague-Dawley (SD) rats. Neonatal rats were exposed to 0.5 mg·kg-1·day-1 BPA or corn oil vehicle from PND1 to PND14 via intramuscular injection. From PND20 to PND 25, BPA caused enrichment of H3K4me2 and H3K4me3 at Kiss1 promoter, concurrent with elevated gene expressions of Kiss1 and GnRH1 in ARC and strikingly increased serum E2 levels in BPA group on PND25. Until PND30, BPA induced obviously overexpression of Kiss1 and GnRH1 in AVPe nucleus. Subsequently, the vagina opening and first ovulation had occurred earlier in rats with BPA exposure in respect to vehicle by PND35. In this study, it is suggested that the effects of BPA on precocious puberty may be due to its action to activate Kiss1 gene in ARC during the juvenile period (from PND20 to PND25) firstly, subsequently to evoke the AVPe neurons, resulting in precocious puberty in the end.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Kisspeptinas , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Compuestos de Bencidrilo , Femenino , Kisspeptinas/genética , Kisspeptinas/metabolismo , Fenoles , Ratas , Ratas Sprague-Dawley , Maduración Sexual
5.
J Endocrinol ; 253(1): 39-51, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35084363

RESUMEN

Kisspeptin neurons, i.e. KNDy neurons, in the arcuate nucleus (ARC) coexpress neurokinin B and dynorphin and regulate gonadotropin-releasing hormone/luteinizing hormone (LH) pulses. Because it remains unclear whether these neurons are associated with reproductive dysfunction in diabetic females, we examined the expression of KNDy neurons detected by histochemistry in streptozotocin (STZ)-induced diabetic female rats 8 weeks after STZ injection. We also evaluated relevant metabolic parameters - glucose, 3-hydroxybutyrate, and non-esterified fatty acids - as indicators of diabetes progression. Severe diabetes with hyperglycemia and severe ketosis suppressed the mRNA expression of KNDy neurons, resulting in low plasma LH levels and persistent diestrus. In moderate diabetes with hyperglycemia and moderate ketosis, kisspeptin-immunoreactive cells and plasma LH levels were decreased, while the mRNA expression of KNDy neurons remained unchanged. Mild diabetes with hyperglycemia and slight ketosis did not affect KNDy neurons and plasma LH levels. The number of KNDy cells was strongly and negatively correlated with plasma 3-hydroxybutyrate levels. The vaginal smear analysis showed unclear proestrus in diabetic rats 3-5 days after STZ injection, and the mRNA expression of kisspeptin in the ARC was decreased 2 weeks after STZ injection in severely diabetic rats. Kisspeptin neurons in the anteroventral periventricular nucleus (AVPV), which induce an LH surge, were unaffected at 2 and 8 weeks after STZ injection regardless of the diabetes severity. These results suggest that diabetes mellitus progression in females may negatively affect ARC kisspeptin neurons but not AVPV kisspeptin neurons, implicating a potential role of ARC kisspeptin neurons in menstrual disorder and infertility.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Neuroquinina B/genética , Neuronas/metabolismo , Ratas
6.
J Neuroendocrinol ; 34(1): e13071, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34904297

RESUMEN

Neural circuits in female rats are exposed to sequential estradiol and progesterone to regulate the release of luteinizing hormone (LH) and ultimately ovulation. Estradiol induces progesterone receptors (PGRs) in anteroventral periventricular nucleus (AVPV) kisspeptin neurons, and as estradiol reaches peak concentrations, neuroprogesterone (neuroP) synthesis is induced in hypothalamic astrocytes. This local neuroP signals to PGRs expressed in kisspeptin neurons to trigger the LH surge. We tested the hypothesis that neuroP-PGR signaling through Src family kinase (Src) underlies the LH surge. As observed in vitro, PGR and Src are co-expressed in AVPV neurons. Estradiol treatment increased the number of PGR immunopositive cells and PGR and Src colocalization. Furthermore, estradiol treatment increased the number of AVPV cells that had extranuclear PGR and Src in close proximity (< 40 nm). Infusion of the Src inhibitor (PP2) into the AVPV region of ovariectomized/adrenalectomized (ovx/adx) rats attenuated the LH surge in trunk blood collected 53 h post-estradiol (50 µg) injection that induced neuroP synthesis. Although PP2 reduced the LH surge in estradiol benzoate treated ovx/adx rats, activation of either AVPV PGR or Src in 2 µg estradiol-primed animals significantly elevated LH concentrations compared to dimethyl sulfoxide infused rats. Finally, antagonism of either AVPV PGR or Src blocked the ability of PGR or Src activation to induce an LH surge in estradiol-primed ovx/adx rats. These results indicate that neuroP, which triggers the LH surge, signals through an extranuclear PGR-Src signaling pathway.


Asunto(s)
Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/fisiología , Familia-src Quinasas/fisiología , Animales , Femenino , Hipotálamo/metabolismo , Ovulación/sangre , Ovulación/metabolismo , Ratas , Ratas Long-Evans , Receptores de Progesterona/metabolismo , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo
7.
Horm Behav ; 135: 105044, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34507241

RESUMEN

Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine, and behavioral responses to stress, as well as behavioral changes during the maternal period. Previous work in our lab reported higher levels of CRFR1 in female, compared to male, mice within the rostral anteroventral periventricular nucleus (AVPV/PeN), a brain region involved in maternal behaviors. In this study, we used CRFR1-GFP reporter mice to investigate whether the reproductive status (postpartum vs. nulliparous) of acutely stressed females affects levels of CRFR1 in the AVPV/PeN and other regions involved in maternal functions. Compared to nulliparous, postpartum day 14 females showed increased AVPV/PeN CRFR1-GFP immunoreactivity and an elevated number of restraint stress-activated AVPV/PeN CRFR1 cells as assessed by immunohistochemical co-localization of CRFR1-GFP and phosphorylated CREB (pCREB). The medial preoptic area (MPOA) and paraventricular hypothalamus (PVN) of postpartum mice showed modest decreases in CRFR1-GFP immunoreactivity, while increased CRFR1-GFP/pCREB co-expressing cells were found in the PVN following restraint stress relative to nulliparous mice. Tyrosine hydroxylase (TH) and CRFR1-GFP co-localization was also assessed in the AVPV/PeN and other regions and revealed a decrease in co-localized neurons in the AVPV/PeN and ventral tegmental area of postpartum mice. Corticosterone analysis of restrained mice revealed blunted peak, but elevated recovery, levels in postpartum compared to nulliparous mice. Finally, we investigated projection patterns of AVPV/PeN CRFR1 neurons using female CRFR1-Cre mice and revealed dense efferent projections to several preoptic, hypothalamic, and hindbrain regions known to control stress-associated and maternal functions. Together, these findings contribute to our understanding of the neurobiology that might underlie changes in stress-related functions during the postpartum period.


Asunto(s)
Hormona Liberadora de Corticotropina , Receptores de Hormona Liberadora de Corticotropina , Animales , Hormona Liberadora de Corticotropina/metabolismo , Femenino , Humanos , Hipotálamo/metabolismo , Masculino , Ratones , Periodo Posparto , Área Preóptica/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo
8.
Biol Reprod ; 105(3): 690-704, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-33824955

RESUMEN

Polychlorinated biphenyls (PCBs) are endocrine-disrupting chemicals (EDCs) with well-established effects on reproduction and behavior in developmentally-exposed (F1) individuals. Because of evidence for transgenerational effects of EDCs on the neuroendocrine control of reproductive physiology, we tested the hypothesis that prenatal PCB exposure leads to unique hypothalamic gene-expression profiles in three generations. Pregnant Sprague-Dawley rats were treated on gestational days 16 and 18 with the PCB mixture Aroclor 1221 (A1221), vehicle (3% DMSO in sesame oil), or estradiol benzoate (EB, 50 µg/kg), the latter a positive control for estrogenic effects of A1221. Maternal- and paternal-lineage F2 and F3 generations were bred using untreated partners. The anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC), involved in the hypothalamic control of reproduction, were dissected from F1 to F3 females and males, RNA extracted, and gene expression measured in a qPCR array. We detected unique gene-expression profiles in each generation, which were sex- and lineage-specific. In the AVPV, treatment significantly changed 10, 25, and 11 transcripts in F1, F2, and F3 generations, whereas 10, 1, and 12 transcripts were changed in these generations in the ARC. In the F1 AVPV and ARC, most affected transcripts were decreased by A1221. In the F2 AVPV, most effects of A1221 were observed in females of the maternal lineage, whereas only Pomc expression changed in the F2 ARC (by EB). The F3 AVPV and ARC were mainly affected by EB. It is notable that results in one generation do not predict results in another, and that lineage was a major determinant in results. Thus, transient prenatal exposure of F1 rats to A1221 or EB can alter hypothalamic gene expression across three generations in a sex- and lineage-dependent manner, leading to the conclusion that the legacy of PCBs continues for generations.


Asunto(s)
Arocloros/efectos adversos , Disruptores Endocrinos/efectos adversos , Expresión Génica/efectos de los fármacos , Hipotálamo/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Femenino , Hipotálamo/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Sprague-Dawley
9.
Int J Mol Sci ; 21(6)2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32204355

RESUMEN

Kisspeptin-expressing neurons in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC) of the hypothalamus relay hormonal and metabolic information to gonadotropin-releasing hormone neurons, which in turn regulate pituitary and gonadal function. Phosphatase and tensin homolog (PTEN) blocks phosphatidylinositol 3-kinase (PI3K), a signaling pathway utilized by peripheral factors to transmit their signals. However, whether PTEN signaling in kisspeptin neurons helps to integrate peripheral hormonal cues to regulate gonadotropin release is unknown. To address this question, we generated mice with a kisspeptin cell-specific deletion of Pten (Kiss-PTEN KO), and first assessed kisspeptin protein expression and gonadotropin release in these animals. Kiss-PTEN KO mice displayed a profound sex and region-specific kisspeptin neuron hyperthrophy. We detected both kisspeptin neuron hyperthrophy as well as increased kisspeptin fiber densities in the AVPV and ARC of Kiss-PTEN KO females and in the ARC of Kiss-PTEN KO males. Moreover, Kiss-PTEN KO mice showed a reduced gonadotropin release in response to gonadectomy. We also found a hyperactivation of mTOR, a downstream PI3K target and central regulator of cell metabolism, in the AVPV and ARC of Kiss-PTEN KO females but not males. Fasting, known to inhibit hypothalamic kisspeptin expression and luteinizing hormone levels, failed to induce these changes in Kiss-PTEN KO females. We conclude that PTEN signaling regulates kisspeptin protein synthesis in both sexes and that its role as a metabolic signaling molecule in kisspeptin neurons is sex-specific.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Gonadotropinas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Fosfohidrolasa PTEN/genética , Animales , Femenino , Marcación de Gen/métodos , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factores Sexuales , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
10.
Endocrinology ; 161(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31742329

RESUMEN

Many neural sex differences are differences in the number of neurons of a particular phenotype. For example, male rodents have more calbindin-expressing neurons in the medial preoptic area (mPOA) and bed nucleus of the stria terminalis (BNST), and females have more neurons expressing estrogen receptor alpha (ERα) and kisspeptin in the ventromedial nucleus of the hypothalamus (VMH) and the anteroventral periventricular nucleus (AVPV), respectively. These sex differences depend on neonatal exposure to testosterone, but the underlying molecular mechanisms are unknown. DNA methylation is important for cell phenotype differentiation throughout the developing organism. We hypothesized that testosterone causes sex differences in neurochemical phenotype via changes in DNA methylation, and tested this by inhibiting DNA methylation neonatally in male and female mice, and in females given a masculinizing dose of testosterone. Neonatal testosterone treatment masculinized calbindin, ERα and kisspeptin cell number of females at weaning. Inhibiting DNA methylation with zebularine increased calbindin cell number only in control females, thus eliminating sex differences in calbindin in the mPOA and BNST. Zebularine also reduced the sex difference in ERα cell number in the VMH, in this case by increasing ERα neuron number in males and testosterone-treated females. In contrast, the neonatal inhibition of DNA methylation had no effect on kisspeptin cell number. We conclude that testosterone normally increases the number of calbindin cells and reduces ERα cells in males through orchestrated changes in DNA methylation, contributing to, or causing, the sex differences in both cell types.


Asunto(s)
Encéfalo/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Diferenciación Sexual/efectos de los fármacos , Testosterona/farmacología , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/metabolismo , Química Encefálica/efectos de los fármacos , Calbindinas/metabolismo , Citidina/administración & dosificación , Citidina/análogos & derivados , Citidina/farmacología , Receptor alfa de Estrógeno/metabolismo , Femenino , Kisspeptinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Diferenciación Sexual/fisiología , Factores Sexuales , Testosterona/administración & dosificación
11.
Neuroendocrinology ; 110(3-4): 172-184, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31466075

RESUMEN

Mammalian reproductive function includes puberty onset and completion, reproductive cyclicity, steroidogenesis, gametogenesis, fertilization, pregnancy, and lactation; all are indispensable to perpetuate species. Reproductive cycles are critical for providing the hormonal milieu needed for follicular development and maturation of eggs, but cycles, in and of themselves, do not guarantee ovulation will occur. Here, we review the roles in female reproductive neuroendocrine function of two hypothalamic populations that produce the neuropeptide kisspeptin, demonstrating distinct roles in maintaining cycles and ovulation.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Estradiol/metabolismo , Hipotálamo Anterior/metabolismo , Kisspeptinas/metabolismo , Ovulación/metabolismo , Reproducción , Animales , Femenino , Humanos
12.
Int J Mol Sci ; 21(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31877966

RESUMEN

Estrogens play an essential role in multiple physiological functions in the brain, including reproductive neuroendocrine, learning and memory, and anxiety-related behaviors. To determine these estrogen functions, many studies have tried to characterize neurons expressing estrogen receptors known as ERα and ERß. However, the characteristics of ERß-expressing neurons in the rat brain still remain poorly understood compared to that of ERα-expressing neurons. The main aim of this study is to determine the neurochemical characteristics of ERß-expressing neurons in the rat hypothalamus using RNAscope in situ hybridization (ISH) combined with immunofluorescence. Strong Esr2 signals were observed especially in the anteroventral periventricular nucleus (AVPV), bed nucleus of stria terminalis, hypothalamic paraventricular nucleus (PVN), supraoptic nucleus, and medial amygdala, as previously reported. RNAscope ISH with immunofluorescence revealed that more than half of kisspeptin neurons in female AVPV expressed Esr2, whereas few kisspeptin neurons were found to co-express Esr2 in the arcuate nucleus. In the PVN, we observed a high ratio of Esr2 co-expression in arginine-vasopressin neurons and a low ratio in oxytocin and corticotropin-releasing factor neurons. The detailed neurochemical characteristics of ERß-expressing neurons identified in the current study can be very essential to understand the estrogen signaling via ERß.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Receptor beta de Estrógeno/biosíntesis , Regulación de la Expresión Génica , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Arginina Vasopresina/biosíntesis , Femenino , Técnica del Anticuerpo Fluorescente , Hibridación in Situ , Masculino , Neuronas/citología , Núcleo Hipotalámico Paraventricular/citología , Ratas
13.
Cell ; 179(6): 1393-1408.e16, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31735496

RESUMEN

Behaviors are inextricably linked to internal state. We have identified a neural mechanism that links female sexual behavior with the estrus, the ovulatory phase of the estrous cycle. We find that progesterone-receptor (PR)-expressing neurons in the ventromedial hypothalamus (VMH) are active and required during this behavior. Activating these neurons, however, does not elicit sexual behavior in non-estrus females. We show that projections of PR+ VMH neurons to the anteroventral periventricular (AVPV) nucleus change across the 5-day mouse estrous cycle, with ∼3-fold more termini and functional connections during estrus. This cyclic increase in connectivity is found in adult females, but not males, and regulated by estrogen signaling in PR+ VMH neurons. We further show that these connections are essential for sexual behavior in receptive females. Thus, estrogen-regulated structural plasticity of behaviorally salient connections in the adult female brain links sexual behavior to the estrus phase of the estrous cycle.


Asunto(s)
Red Nerviosa/fisiología , Conducta Sexual Animal/fisiología , Animales , Estrógenos/metabolismo , Ciclo Estral/efectos de los fármacos , Femenino , Hormonas Esteroides Gonadales/farmacología , Hipotálamo Anterior/fisiología , Masculino , Ratones Endogámicos C57BL , Red Nerviosa/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ovario/metabolismo , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Receptores de Progesterona/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
14.
J Comp Neurol ; 527(6): 1056-1069, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30499109

RESUMEN

Corticotropin-releasing factor binds with high affinity to CRF receptor 1 (CRFR1) and is implicated in stress-related mood disorders such as anxiety and depression. Using a validated CRFR1-green fluorescent protein (GFP) reporter mouse, our laboratory recently discovered a nucleus of CRFR1 expressing cells that is prominent in the female rostral anteroventral periventricular nucleus (AVPV/PeN), but largely absent in males. This sex difference is present in the early postnatal period and remains dimorphic into adulthood. The present investigation sought to characterize the chemical composition and gonadal hormone regulation of these sexually dimorphic CRFR1 cells using immunohistochemical procedures. We report that CRFR1-GFP-ir cells within the female AVPV/PeN are largely distinct from other dimorphic cell populations (kisspeptin, tyrosine hydroxylase). However, CRFR1-GFP-ir cells within the AVPV/PeN highly co-express estrogen receptor alpha as well as glucocorticoid receptor. A single injection of testosterone propionate or estradiol benzoate on the day of birth completely eliminates the AVPV/PeN sex difference, whereas adult gonadectomy has no effect on CRFR1-GFP cell number. These results indicate that the AVPV/PeN CRFR1 is regulated by perinatal but not adult gonadal hormones. Finally, female AVPV/PeN CRFR1-GFP-ir cells are activated following an acute 30-min restraint stress, as assessed by co-localization of CRFR1-GFP cells with phosphorylated (p) CREB. CRFR1-GFP/pCREB cells were largely absent in the male AVPV/PeN. Together, these data indicate a stress and gonadal hormone responsive nucleus that is unique to females and may contribute to sex-specific stress responses.


Asunto(s)
Hipotálamo Anterior/citología , Neuronas/citología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Caracteres Sexuales , Animales , Femenino , Hormonas Gonadales/fisiología , Hipotálamo Anterior/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo
15.
J Comp Neurol ; 526(15): 2388-2405, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30004584

RESUMEN

Of the 18 sub-Saharan elephant-shrew species, only eastern rock elephant-shrews reproduce seasonally throughout their distribution, a process seemingly independent of photoperiod. The present study characterizes gonadal status and location/intensity of gonadotrophin-releasing hormone-1 (GnRH-1) and kisspeptin immunoreactivities in this polyovulating species in the breeding and nonbreeding seasons. GnRH-1-immunoreactive (ir) cell bodies are predominantly in the medial septum, diagonal band, and medial preoptic area; processes are generally sparse except in the external median eminence. Kisspeptin-ir cell bodies are detected only within the arcuate nucleus; the density of processes is generally low, except in the septohypothalamic nucleus, ventromedial bed nucleus of the stria terminalis, arcuate nucleus, and internal and external median eminence. Kisspeptin-ir processes are negligible at locations containing GnRH-1-ir cell bodies. The external median eminence is the only site with conspicuously overlapping distributions of the respective immunoreactivities and, accordingly, a putative site for kisspeptin's regulation of GnRH-1 release in this species. In the nonbreeding season in males, there is an increase in the rostral population of GnRH-1-ir cell bodies and density of GnRH-1-ir processes in the median eminence. In both sexes, the breeding season is associated with increased kisspeptin-ir process density in the rostral periventricular area of the third ventricle and arcuate nucleus; at the latter site, this is positively correlated with gonadal mass. Cross-species comparisons lead us to hypothesize differential mechanisms within these peptidergic systems: that increased GnRH-1 immunoreactivity during the nonbreeding season reflects increased accumulation with reduced release; that increased kisspeptin immunoreactivity during the breeding season reflects increased synthesis with increased release.


Asunto(s)
Hormona Liberadora de Gonadotropina/fisiología , Kisspeptinas/fisiología , Estaciones del Año , Conducta Sexual Animal/fisiología , Musarañas/fisiología , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/fisiología , Mapeo Encefálico , Femenino , Inmunohistoquímica , Masculino , Núcleos Talámicos de la Línea Media/citología , Núcleos Talámicos de la Línea Media/fisiología , Neuronas/fisiología , Reproducción/fisiología
16.
Artículo en Inglés | MEDLINE | ID: mdl-29770127

RESUMEN

Sex steroids play a major role in sexually dimorphic brain development during not only the perinatal period but also the pubertal period. We previously showed that, in male mice, the estrogen receptor-α (Esr1) and aromatase (Cyp19a1) genes are essential to the sexually dimorphic formation of the anteroventral periventricular nucleus (AVPV) and the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), but the estrogen receptor-ß (Esr2) gene is not necessary. We also showed that the androgen receptor (Ar) gene is essential to the sexually dimorphic formation of the BNSTp. These genes are expressed in the AVPV and BNSTp of perinatal mice. However, it remains unknown whether these genes are expressed in the AVPV and BNSTp during puberty, and whether the expression, if any, differs by sex, age, and brain region. Here, we dissected the AVPV and BNSTp from Nissl-stained brain sections of male and female mice on postnatal day (PD) 20 (prepuberty), PD30 (puberty onset in females), PD40 (puberty onset in males), and PD60 (young adult) using a laser microdissection system. We then examined the mRNA levels of Esr1, Esr2, Cyp19a1, and Ar in these brain regions. In the AVPV, Esr1 mRNA levels were greater in females than males during PD20-60. Esr2 and Ar mRNA expressions did not differ between sexes. Ar mRNA levels were higher at PD30 than PD20. Cyp19a1 mRNA was not detected in the AVPV at PD20-60. In the BNSTp, Esr1 and Esr2 mRNA levels were higher in females than in males during PD20-60, although the mRNA levels of Cyp19a1 and Ar did not differ between sexes. Additionally, we revealed that orchiectomy at PD20 induced a failure of normal formation of the male BNSTp and testosterone replacement in the prepubertal period rescued the effect of orchiectomy at PD20. Taken together, it is suggested that pubertal testosterone transported to the AVPV is not converted to estradiol there and does not act via ESR1 and ESR2. By contrast, the formation of the male BNSTp may be affected by testicular testosterone during puberty via AR and/or via ESR1 after conversion to estradiol by CYP19A1.

17.
Reprod Med Biol ; 17(2): 164-172, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29692674

RESUMEN

PURPOSE: Hypothalamic kisspeptin neurons are considered to play a critical role in regulating mammalian reproduction and integrating humoral and neuronal inputs that control gonadotropin-releasing hormone (GnRH)/gonadotropin release. The present study aimed to investigate the upstream regulator candidates for kisspeptin neurons. METHODS: Visualized kisspeptin neurons that were taken from the arcuate nucleus (ARC) of Kiss1-tdTomato rats were subjected to next-generation sequencing (NGS) analysis. In situ hybridization (ISH) for the calcitonin receptor gene (Calcr) was performed throughout the whole forebrain of ovariectomized wild-type female rats that had been implanted with a negative feedback level of estrogen, because the Calcr expression was evident in the ARC kisspeptin neurons from the NGS analysis. Then, a double ISH was performed for the Calcr and kisspeptin gene (Kiss1) in the brain regions, containing either the anteroventral periventricular nucleus (AVPV) or ARC of the female rats. RESULTS: The NGS analysis revealed that the Calcr was highly expressed in the ARC kisspeptin neurons. It was found that the Calcr was co-expressed in 12% and 22% of the Kiss1-expressing cells in the ARC and AVPV, respectively. CONCLUSION: The present study suggests that calcitonin receptor signaling could be involved in the regulation of reproductive function through the direct control of the ARC and/or AVPV kisspeptin neurons, and then GnRH/gonadotropin release.

18.
eNeuro ; 4(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-29098175

RESUMEN

New cells are added during both puberty and adulthood to hypothalamic regions that govern reproduction, homeostasis, and social behaviors, yet the functions of these late-born cells remain elusive. Here, we pharmacologically inhibited cell proliferation in ventricular zones during puberty or in adulthood and determined subsequent effects on the hormone-induced surge of luteinizing hormone (LH) in female rats. Initial neuroanatomical analyses focused on verifying incorporation, activation, and pharmacological inhibition of pubertally or adult born cells in the anteroventral periventricular nucleus (AVPV) of the hypothalamus because of the essential role of the AVPV in triggering the preovulatory LH surge in females. We first showed that approximately half of the pubertally born AVPV cells are activated by estradiol plus progesterone (P) treatment, as demonstrated by Fos expression, and that approximately 10% of pubertally born AVPV cells express estrogen receptor alpha (ERα). Next, we found that mitotic inhibition through intracerebroventricular (ICV) administration of cytosine ß-D-arabinofuranoside (AraC), whether during puberty or in adulthood, decreased the number of new cells added to the AVPV and the suprachiasmatic nucleus (SCN), and also blunted and delayed the hormone-induced LH surge. These studies do not prove, but are highly suggestive, that ongoing postnatal addition of new cells in periventricular brain regions, including the AVPV and SCN, may be important to the integrity of female reproduction.


Asunto(s)
Hipotálamo Anterior/citología , Hipotálamo Anterior/metabolismo , Hormona Luteinizante/metabolismo , Maduración Sexual/fisiología , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/metabolismo , Animales , Antimitóticos/farmacología , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Estradiol/administración & dosificación , Estradiol/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Hipotálamo Anterior/efectos de los fármacos , Hipotálamo Anterior/crecimiento & desarrollo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Progesterona/administración & dosificación , Progesterona/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Sprague-Dawley , Receptores de Progesterona/metabolismo , Núcleo Supraquiasmático/efectos de los fármacos , Núcleo Supraquiasmático/crecimiento & desarrollo
19.
Neuroscience ; 361: 167-178, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28823817

RESUMEN

Corticotropin-releasing factor (CRF) signaling through CRF receptor 1 (CRFR1) regulates autonomic, endocrine and behavioral responses to stress and has been implicated in the pathophysiology of several disorders including anxiety, depression, and addiction. Using a validated CRFR1 reporter mouse line (bacterial artificial chromosome identified by green fluorescence protein (BAC GFP-CRFR1)), we investigated the distribution of CRFR1 in the developing mouse forebrain. Distribution of CRFR1 was investigated at postnatal days (P) 0, 4, and 21 in male and female mice. CRFR1 increased with age in several regions including the medial amygdala, arcuate nucleus, paraventricular hypothalamus, medial septum, CA1 hippocampal area, and the lateral habenula. Regions showing decreased CRFR1 expression with increased age include the intermediate portion of the periventricular hypothalamic nucleus, and CA3 hippocampal area. We report a sexually dimorphic expression of CRFR1 within the rostral portion of the anteroventral periventricular nucleus of the hypothalamus (AVPV/PeN), a region known to regulate ovulation, reproductive and maternal behaviors. Females had a greater number of CRFR1-GFP-ir cells at all time points in the AVPV/PeN and CRFR1-GFP-ir was nearly absent in males by P21. Overall, alterations in CRFR1-GFP-ir distribution based on age and sex may contribute to observed age- and sex-dependent differences in stress regulation.


Asunto(s)
Corticosterona/metabolismo , Hipotálamo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Envejecimiento , Animales , Ansiedad/fisiopatología , Trastornos de Ansiedad/metabolismo , Femenino , Masculino , Conducta Materna/fisiología , Ratones , Prosencéfalo/crecimiento & desarrollo , Caracteres Sexuales
20.
Neuroscience ; 303: 312-22, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26166732

RESUMEN

Sexually dimorphic neural structures regulate numerous gender-specific functions including luteinizing hormone (LH) release patterns. The female cyclic surge pattern of release is controlled by the anteroventral periventricular nucleus (AVPV), a preoptic area (POA) region that is significantly smaller in males. The prevailing hypothesis used to explain these differences in structure and function is that a "default" feminine AVPV is defeminized by exposure to estradiol (E2), a metabolite of testosterone (T) produced by the perinatal testes. E2 exposure then culminates in apoptosis in the male AVPV, but the upstream pathways are poorly understood. To address this issue, we compared AVPV transcriptomes of postnatal day 2 (PND2) males and females with those of females treated with E2 or vehicle. Only six of 89 sex-specific genes were also regulated by E2 in the PND2 AVPV and E2 regulated over 280 genes not found to be sex-specific. Of targets that changed similarly in males and E2-treated females, the gene encoding CUG triplet repeat, RNA-binding protein 2 (Cugbp2), a proapoptotic protein, showed the highest fold-changes. Quantitative polymerase chain reaction (QPCR) studies confirmed higher mRNA levels in PND2 male and E2-treated female AVPVs wherein E2 induces apoptosis. POA mapping studies detected Cugbp2 mRNA in the AVPV and in the sexually dimorphic nucleus of the POA (SDN-POA); however, sex differences and E2 effects occurred only in the AVPV. Combined with evidence that Cugbp2 regulates splicing and translation of mRNAs linked to sexual differentiation, we propose that this gene mediates E2-dependent effects on AVPV defeminization.


Asunto(s)
Proteínas CELF/metabolismo , Estradiol/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hipotálamo Anterior , Diferenciación Sexual , Análisis de Varianza , Animales , Animales Recién Nacidos , Proteínas CELF/genética , Femenino , Hipotálamo Anterior/efectos de los fármacos , Hipotálamo Anterior/crecimiento & desarrollo , Hipotálamo Anterior/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA