Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202413916, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271461

RESUMEN

Metal-Organic Frameworks (MOFs), praised for structural flexibility and tunability, are prominent catalyst prototypes for exploring oxygen evolution reaction (OER). Yet, their intricate transformations under OER, especially in industrial high-current environments, pose significant challenges in accurately elucidating their structure-activity correlation. Here, we harnessed an electrooxidation process for controllable MOF reconstruction, discovering that Fe doping expedites Ni(Fe)-MOF structural evolution, accompanied by the elongation of Ni-O bonds, monitored by in-situ Raman and UV-visible spectroscopy. Theoretical modeling further reveals that Fe doping and defect-induced tensile strain in the NiO6 octahedra augments the metal ds-Op hybridization, optimizing their adsorption behavior and augmenting OER activity. The reconstructed Ni(Fe)-MOF, serving as the anode in anion exchange membrane water electrolysis, achieves a noteworthy current density of 3.3 A cm-2 at 2.2 V while maintaining equally stable operation for 160 h spanning from 0.5 A cm-2 to 1 A cm-2. This undertaking elevates our comprehension of OER catalyst reconstruction, furnishing promising avenues for designing highly efficacious catalysts across electrochemical platforms.

2.
Small ; : e2404060, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235565

RESUMEN

In recent years, catalysts based on transition metal sulfides have garnered extensive attention due to their low cost and excellent electrocatalytic activity in the alkaline oxygen evolution reaction. Here, the preparation of Fe-doped Ni3S2 via a one-step hydrothermal approach is reported by utilizing inexpensive transition metals Ni and Fe. In an alkaline medium, Fe-Ni3S2 exhibits outstanding electrocatalytic activity and stability for the OER, and the current density can reach 10 mA cm-2 with an overpotential of 163 mV. In addition, Pt/C||Fe-Ni3S2 is used as the membrane electrode of the anion exchange membrane water electrolyzer, which is capable of providing a current density of 650 mA cm-2 at a cell voltage of 2.0 V, outperforming the benchmark Ir/C. The principle is revealed that the doping of Fe enhances the electrocatalytic water decomposition ability of Ni3S2 by in situ Raman and in situ X-ray absorption fine structure. The results indicate that the doping of Fe decreases the charge density near Ni atoms, which renders Fe-Ni3S2 more favorable for the adsorption of OH- and the formation of *OO- intermediates. This work puts forward an effective strategy to significantly improve both the alkaline OER activity and stability of low-cost electrocatalysts.

3.
Small ; : e2405468, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263762

RESUMEN

Anion exchange membrane water electrolysis (AEMWE) offers a sustainable path for hydrogen production with advantages such as high current density, dynamic responsiveness, and low-cost electrocatalysts. However, the development of efficient and durable oxygen evolution reaction (OER) electrocatalysts under operating conditions is crucial for achieving the AEMWE. This study systematically investigated Fe-Co-Ni ternary amorphous electrocatalysts for the OER in AEMWE through a comprehensive material library system comprising 21 composition series. The study aims to explore the relationship between composition, degree of crystallinity, and electrocatalytic activity using ternary contours and binary plots to derive optimal catalysts. The findings reveal that higher Co and lower Fe contents lead to increased structural disorder within the Fe-Co-Ni system, whereas an appropriate amount of Fe addition is necessary for OER activity. It is concluded that the amorphous structure of Fe-Co3-Ni possesses an optimal ternary composition and degree of crystallinity to facilitate the OER. Post-OER analyses reveal that the optimized ternary amorphous structure induces structural reconstruction into an OER-favorable OOH-rich surface. The Fe-Co3-Ni electrocatalysts exhibit outstanding performances in both half-cells and single-cells, with an overpotential of 256 mV at 10 mA cm- 2 and a current density of 2.0 A cm- 2 at 1.89 V, respectively.

4.
ACS Nano ; 18(34): 22901-22916, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39137066

RESUMEN

Developing a high-efficiency and stable anode catalyst layer (CL) is crucial for promoting the practical applications of anion exchange membrane (AEM) water electrolyzers. Herein, a hierarchical nanosheet array composed of oxygen vacancy-enriched CoCrOx nanosheets and dispersed FeNi layered double hydroxide (LDH) is proposed to regulate the electronic structure and increase the electrical conductivity for improving the intrinsic activity of the oxygen evolution reaction (OER). The CoCrOx/NiFe LDH electrodes require an overpotential of 205 mV to achieve a current density of 100 mA cm-2, and they exhibit long-term stability at 1000 mA cm-2 over 7000 h. Notably, a breakthrough strategy is introduced in membrane electrode assembly (MEA) fabrication by transferring CoCrOx/NiFe LDH to the surface of an AEM, forming a 3D-interlocked anode CL, significantly reducing the overall cell resistance and enhancing the liquid/gas mass transfer. In AEM water electrolysis, it exhibits an ultralow cell voltage of 1.55 Vcell to achieve a current density of 1.0 A cm-2 in 1 M KOH, outperforming the state-of-the-art Pt/C//IrO2. This work provides a valuable approach to designing high-efficiency electrocatalysts at the single-cell level for advanced alkaline water electrolysis technologies.

5.
ACS Nano ; 18(33): 22454-22464, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39129247

RESUMEN

Recycling spent lithium-ion batteries (LIBs) to efficient water-splitting electrocatalysts is a promising and sustainable technology route for green hydrogen production by renewables. In this work, a fluorinated ternary metal oxide (F-TMO) derived from spent LIBs was successfully converted to a robust water oxidation catalyst for pure water electrolysis by utilizing an anion-exchange membrane. The optimized catalyst delivered a high current density of 3.0 A cm-2 at only 2.56 V and a durability of >300 h at 0.5 A cm-2, surpassing the noble-metal IrO2 catalyst. Such excellent performance benefits from an artificially endowed interface layer on the F-TMO, which renders the exposure of active metal (oxy)hydroxide sites with a stabilized configuration during pure water operation. Compared to other metal oxides (i.e., NiO, Co3O4, MnO2), F-TMO possesses a higher stability number of 2.4 × 106, indicating its strong potential for industrial applications. This work provides a feasible way of recycling waste LIBs to valuable electrocatalysts.

6.
ChemSusChem ; : e202401332, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185822

RESUMEN

Platinum group metal (PGM)-free electrocatalysts have emerged as promising alternatives to replace Pt for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). However, traditional synthesis methods limit the single-atom site density due to metal agglomeration at higher temperatures. This work explores the preparation of hierarchically porous atomically dispersed electrocatalysts for the ORR. The materials were prepared via ionothermal synthesis, where magnesium nitrate was used to prepare hierarchically porous carbon materials. The in-situ formed Mg-Nx sites were trans-metalated to yield ORR-active Fe-Nx sites. The resulting carbon-based catalysts displayed excellent electrocatalytic activity, attributed to the atomically dispersed Fe-Nx active sites and high meso- and macroporosity that enhances the mass transport and exposes more accessible active sites.

7.
Water Res ; 263: 122178, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39096806

RESUMEN

Membrane-contamination during electrodialysis (ED) process is still a non-negligible challenge, while irreversible consumption and unsustainability have become the main bottlenecks limiting the improvement of anion exchange membranes (AEMs) anti-contamination activity. Here, we introduce a novel approach to design AEMs by chemically assembling 4-pyndinepropanol with bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) in an electrochromic-inspired process. Subsequently, the co-mingled TiO2@Ag nanosheet with the casting-solution were sprayed onto the surface of the substrate membrane to create a micrometer-thick interfacial layer. The addition of Ag nanoparticles (NPs) enhances the active sites of TiO2, resulting in stronger local surface plasmon resonance (LSPR) effects and reducing its energy band gap limitation (From 3.11 to 2.63 eV). Post-electrodialysis electrochromic AEMs incorporating TiO2@Ag exhibit synergistic enhancement of sunlight absorption, effectively suppressing photogenerated carrier binding and promoting migration. These resultant-membranes demonstrate significantly improved bacterial inhibition properties (42.0-fold increase for E. coli) and degradation activity (7.59-fold increase for rhodamine B) compared to pure TiO2 membranes. Importantly, they maintain photocatalytic activity without compromising salt-separation performance or stability, as the spraying process utilizes the same substrate materials. This approach to rational design and regulation of anti-contamination AEMs offers new insights into the collaborative synergy of color-changing and photocatalytic materials.


Asunto(s)
Membranas Artificiales , Plata , Titanio , Titanio/química , Plata/química , Catálisis , Luz , Escherichia coli/efectos de los fármacos , Diálisis , Aniones , Nanopartículas del Metal/química
8.
ChemSusChem ; : e202400825, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39158843

RESUMEN

Anion exchange membrane water electrolysis (AEMWE) for hydrogen production combines the advantages of proton exchange membrane water electrolysis and alkaline water electrolysis. Several strategies have been adopted to improve the performance of AEMWE and to obtain membranes with high hydroxide ion conductivity, low gas permeation, and high durability. In this work AEMs reinforced with poly[2,2'-(p-oxydiphenylene)-5,5'-benzimidazole] (PBIO) polymer fibres have been developed. A fibre web of PBIO prepared by electrospinning was impregnated into the poly(terphenylene) mTPN ionomer. The membranes are strengthened by the formation of a strong surface interaction between the reinforcement and the ionomer and by the expansion of the reinforcement over the membrane thickness. The hydroxide ion conductivity, thermal stability, dimensional swelling, mechanical properties, and hydrogen crossover of the reinforced membranes were compared with the characteristics of the non-reinforced counterpart. The incorporation of PBIO nanofibre reinforcement into the membrane reduced hydrogen crossover and improved tensile properties, without affecting hydroxide conductivity. PBIO-reinforced mTPN membrane was assessed in a PGM-free 5 cm2 AEMWE single cell using NiFe oxide anode and NiMo cathode catalysts, at a cell temperature of 50 °C and with 1 M KOH fed to the anode. The performance of the cell increased continuously over the 260 hours test period, reaching 2.06 V at 1.0 A cm-2.

9.
Membranes (Basel) ; 14(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39195415

RESUMEN

This work is an effort to mitigate the existing environmental issues caused by brine discharge from Kuwait's desalination plants and to find an economical and efficient way of managing reject brine from local desalination plants. Low- and high-resistance membranes (LRMs and HRMs, respectively) were used to produce salt and low-salinity water from brine effluent utilizing an electrodialysis (ED)-evaporator hybrid system. The effect of high current densities of 300, 400, and 500 A/m2 and brine flowrates of 450 and 500 L/h on the quality of produced salt and diluate were investigated for LRM and HRM. The recovered salt purity for LRM is up to 90.58%. Results show that the low-resistance membrane (LRM) achieved higher water recovery, energy consumption, desalination rate, operation time and ion removal rate than those of the high-resistance membrane (HRM) under the same operating conditions. The difference in concentration for 300 A/m2 between LRM and HRM increased from 0.93% at 10 min to 8.28% at 140 min. The difference in diluate concentration effluent is negligible for both membranes, whereas LRM produced higher concentrate effluent than HRM for all current densities and low flowrate (400 L/h). The maximum difference between LRM and HRM (with LRM achieving higher concentrations) is 10.7% for 400 A/m2. The permselectivity of LRM for monovalent cations decreased with current density, whereas the effect on permselectivity for HRM was insignificant for the current density values. The addition of a neutral cell was effective in reducing the buildup of divalent ions on the inner membrane of the cathode side.

10.
Adv Mater ; : e2408634, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148167

RESUMEN

Modulating the electronic structure of catalysts to effectively couple the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is essential for developing high-efficiency anion exchange membrane water electrolyzer (AEMWE). Herein, a coral-like nanoarray composed of nanosheets through the synergistic layering effect of cobalt and the 1D guiding of vanadium is synthesized, which promotes extensive contact between the active sites and electrolyte. The HER and OER activities can be enhanced by modulating the electronic structure through nitridation and phosphorization, respectively, enhancing the strength of metal-H bond to optimize hydrogen adsorption and facilitating the proton transfer to improve the transformation of oxygen-containing intermediates. Resultantly, the AEMWE achieves a current density of 500 mA cm-2 at 1.76 V for 1000 h in 1.0 M KOH at 70 °C. The energy consumption is 4.21 kWh Nm-3 with the producing hydrogen cost of $0.93 per kg H2. Operando synchrotron radiation and Bode phase angle analyses reveal that during the high-energy consumed OER, the dissolution of vanadium species transforms distorted Co-O octahedral into regular octahedral structures, accompanied by a shortening of the Co-Co bond length. This structural evolution facilitates the formation of oxygen intermediates, thus accelerating the reaction kinetics.

11.
Polymers (Basel) ; 16(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39204600

RESUMEN

Triblock copolymers such as styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) have been widely used as an anion exchange membrane for fuel cells due to their phase separation properties. However, modifying the polymer architecture for optimized membrane properties is still challenging. This research develops a strategy to control the membrane morphology based on quaternized SEBS (SEBS-Q) by dual-tapering the interfacial block sequences. The structural and transport properties of SEBS-Q with various tapering styles at different hydration levels are systematically investigated by coarse-grained molecular simulations. The results show that the introduction of the tapered regions induces the formation of a bicontinuous water domain and promotes the diffusivity of the mobile components. The interplay between the solvation of the quaternary groups and the tapered fraction determines the conformation of polymer chains among the hydrophobic-hydrophilic subdomains. The strategy presented here provides a new path to fabricating fuel cell membranes with controlled microstructures.

12.
Environ Sci Pollut Res Int ; 31(40): 53399-53409, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190250

RESUMEN

In the current work, the adsorption of acid black 1 (AB1), a hair dye, and methyl orange (MO) on anion exchange membrane BII (AEM-BII) in a binary system was studied experimentally. The effects study for contact time, adsorbent's and adsorbates' concentration, and temperature of aqueous media on the AB1 and MO removal, AEM-BII recovery, and reusability were also investigated. The highest removal was observed at optimum conditions, 150-min contact time and 5 g L-1 of adsorbent for AB1 (91.2%) and MO (83.4%). Adsorption kinetics was estimated by pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetics. The experimental findings were fitted well by PSO kinetics with an adsorption capacity of 19.45 ± 0.93 and 19.34 ± 0.84 mg g-1 for ABI and MO, respectively. Moreover, the adsorption isotherm study confirmed that AB1 and MO adsorption by AEM-BII from the binary system was followed by Langmuir isotherms. Adsorption thermodynamics revealed that adsorption of both AB1 and MO by AEM-BII was endothermic and spontaneous. Moreover, the desorption phenomenon of ABI and MO from the loaded AEM-BII showed that dye removal from AEM-BII was found to be 74.95%, demonstrating AEM-BII can be considered as good adsorbent for acidic dyes from the binary system.


Asunto(s)
Colorantes , Termodinámica , Contaminantes Químicos del Agua , Cinética , Adsorción , Colorantes/química , Contaminantes Químicos del Agua/química , Compuestos Azo/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno
13.
ACS Appl Mater Interfaces ; 16(36): 47387-47395, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39189435

RESUMEN

Nickel-iron (oxy)hydroxide (NiFeOxHy) stands as a cutting-edge nonprecious electrocatalyst for the oxygen evolution reaction (OER). However, the intrinsic thermodynamic instability of nickel and iron as anode materials in pure water-fed electrolyzers poses a significant durability challenge. In this study, an anion exchange ionomer coating was applied to NiFeOxHy to modify the local pH between a membrane and an electrode. This effectively extended the diffusion length of hydroxide anions toward the electrode, establishing an alkaline local pH environment. Stability tests with the ionomer coating showed reduced Ni dissolution. Moreover, locally resolved current density measurements were used to demonstrate a notably lower degradation rate during stability testing, revealing a 6-fold increase in stability with the ionomer on NiFeOxHy. In situ Raman spectroscopy in a neutral pH electrolyte confirmed inhibited Ni oxidation with the ionomer, mitigating Ni dissolution and enhancing stability of state-of-the-art NiFeOxHy catalysts in pure water-fed water electrolyzers.

14.
ChemSusChem ; : e202400996, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965888

RESUMEN

Water electrolysis is increasingly considered a viable solution for meeting the world's growing energy demands and mitigating environmental issues. An inventive strategy to mitigate the energy requirements involves substituting the energy-intensive oxygen evolution reaction (OER) with biomass-derived glycerol electrooxidation. Nonetheless, the synthesis of electrocatalysts for controlling the selectivity towards added-value chemicals at the anode and efficient H2 generation at the cathode remains a critical bottleneck. Herein, we implemented a galvanostatic electroshock synthesis approach to control the reduction kinetics of Au(III) and Pt(IV) to grow ultra-low amount of gold-platinum alloys on a gas diffusion electrode (12-26 µgmetal cm‒2) for glycerol-fed hydroxide anion exchange membrane based electrolyzer. The symmetric GDE-Au100-xPtx||GDE-Au100-xPtx systems showed a notable improvement in electrolyzer performance (GDE-Au64Pt36 = 201 mA cm-2) as compared to monometallic versions (GDE-Au100Pt0 = 18 mA cm-2, GDE-Au0Pt100 = 81 mA cm-2). Chromatography (HPLC) analysis underscores the critical importance of bulk electrolysis methodology (galvanostatic vs potentiostatic) for the efficient conversion of glycerol into high-value-added products. Regarding the electrical energy required to produce 1 kg of H2 for such an electrolyzer fed at the anode with glycerol, our results confirm a drastic decrease by a factor of at least two compared with conventional water electrolysis.

15.
Small ; : e2402241, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082423

RESUMEN

Future energy loss can be minimized to a greater extent via developing highly active electrocatalysts for alkaline water electrolyzers. Incorporating an innovative design like high entropy oxides, dealloying, structural reconstruction, in situ activation can potentially reduce the energy barriers between practical and theoretical potentials. Here, a Fd-3m spinel group high entropy oxide is developed via a simple solvothermal and calcination approach. The developed (FeCoMnZnMg)3O4 electrocatalyst shows a near equimolar distribution of all the metal elements resulting in higher entropy (ΔS ≈1.61R) and higher surface area. The self-reconstructed spinel high entropy oxide (S-HEO) catalyst exhibited a lower overpotential of 240 mV to reach 10 mA cm-2 and enhanced reaction kinetics (59 mV dec-1). Noticeably, the S-HEO displayed an outstanding durability of 1000 h without any potential loss, significantly outperforming most of the reported OER electrocatalysts. Further, S-HEO is evaluated as the anode catalyst for an anion exchange membrane water electrolyzer (AEMWE) in 1 m, 0.1 m KOH, and DI water at 20 and 60 °C. These results demonstrate that S-HEO is a highly attractive, non-noble class of materials for high active oxygen evolution reaction (OER) electrocatalysts allowing fine-tuning beyond the limits of bi- or trimetallic oxides.

16.
Adv Mater ; 36(36): e2404981, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39075826

RESUMEN

Alkaline anion exchange membrane (AEM)-based fuel cells (AEMFCs) and water electrolyzers (AEMWEs) are vital for enabling the efficient and large-scale utilization of hydrogen energy. However, the performance of such energy devices is impeded by the relatively low conductivity of AEMs. The conventional trial-and-error approach to designing membrane structures has proven to be both inefficient and costly. To address this challenge, a fully connected neural network (FCNN) model is developed based on acid-catalyzed AEMs to analyze the relationship between structure and conductivity among 180,000 AEM variations. Under machine learning guidance, anilinium cation-type membranes are designed and synthesized. Molecular dynamics simulations and Mulliken charge population analysis validated that the presence of a large anilinium cation domain is a result of the inductive effect of N+ and benzene rings. The interconnected anilinium cation domains facilitated the formation of a continuous ion transport channel within the AEMs. Additionally, the incorporation of the benzyl electron-withdrawing group heightened the inductive effect, leading to high conductivity AEM variant as screened by the machine learning model. Furthermore, based on the highly active and low-cost monomers given by machine learning, the large-scale synthesis of anilinium-based AEMs confirms the potential for commercial applications.

17.
Membranes (Basel) ; 14(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39057663

RESUMEN

Promising results were recently reported for hierarchical ion-exchange membranes, fabricated by the UV crosslinking of a thin functional coating on a porous substrate, on model NaCl solution demineralization by electrodialysis (ED). Hierarchical anion-exchange membranes (hAEMs) have never been tested with complex solutions to demonstrate their potential use in the biofood industry. The impact of three different crosslinking densities of the ion-exchange coating (EbN-1, EbN-2 and EbN-3) on the performances of whey demineralization by ED was investigated and compared with commercial AMX. The results showed that by increasing the coating crosslinking density, the membrane conductivity decreased, leading to an increase in the global system resistance during whey demineralization (from +28% to +64%). However, 18% sweet whey solutions were successfully treated until 70% demineralization for all membranes. The energy consumption (averaged EbN value of 14.8 vs. 15.1 Wh for AMX) and current efficiency (26.0 vs. 27.4%) were similar to the control. Potential fouling by non-protein nitrogen was detected by ATR-FTIR for hAEMs impacting some membranes properties and ED performances. Overall, EbN-1 obtained results were comparable with the benchmark and can be considered as an alternative membrane for whey demineralization by ED and other applications in the demineralization of complex products from the food industry.

18.
Small ; : e2405080, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39073300

RESUMEN

The design of electrocatalysts for oxygen evolution reaction (OER) remains a limitation of industrial hydrogen production by electrolysis of water. Excellent and stable OER catalysts can be developed by activating lattice oxygen and changing the reaction path. Herein, S and FeOOH on the Co(OH)2 nanoneedle arrays are introduced to construct a heterostructure (S-FeOOH/Co(OH)2/NF) as a proof of concept. Theoretical calculations and experimental suggest that the Co-O-Fe motif formed at the heterogeneous interface with the introduction of FeOOH, inducing electron transfer from Co to Fe, enhancing Co─O covalency and reducing intramolecular charge transfer energy, thereby stimulating direct intramolecular lattice oxygen coupling. Doping of S in FeOOH further accelerates electron transfer, improves lattice oxygen activity, and prevents dissolution of FeOOH. Consequently, the overpotential of S-FeOOH/Co(OH)2/NF is only 199 mV at 10 mA cm-2, and coupled with the Pt/C electrode can be up to 1 A cm-2 under 1.79 V and remain stable for over 120 h in an anion exchange membrane water electrolyzer (AEMWE). This work proposes a strategy for the design of efficient and stable electrocatalysts for industrial water electrolysis and promotes the commercialization of AEMWE.

19.
Molecules ; 29(13)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38999128

RESUMEN

The chemical stability and ion transport properties of quaternized chitosan (QCS)-based anion exchange membranes (AEMs) were explored using Density Functional Theory (DFT) calculations and all-atom molecular dynamics (MD) simulations. DFT calculations of LUMO energies, reaction energies, and activation energies revealed an increasing stability trend among the head groups: propyl trimethyl ammonium chitosan (C) < oxy propyl trimethyl ammonium chitosan (B) < 2-hydroxy propyl trimethyl ammonium chitosan (A) at hydration levels (HLs) of 0 and 3. Subsequently, all-atom MD simulations evaluated the diffusion of hydroxide ions (OH-) through mean square displacement (MSD) versus time curves. The diffusion coefficients of OH- ions for the three types of QCS (A, B, and C) were observed to increase monotonically with HLs ranging from 3 to 15 and temperatures from 298 K to 350 K. Across different HLs and temperatures, the three QCS variants exhibited comparable diffusion coefficients, underlining their effectiveness in vehicular transport of OH- ions.

20.
Chemistry ; 30(41): e202401208, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38953321

RESUMEN

Anion exchange membrane fuel cell (AEMFC) is an emerging and promising technology that can help realize a carbon-neutral, sustainable economy. Also, compared to the proton exchange membrane counterpart, AEMFC can achieve comparable cell outputs with lower costs due to the applicability of non-platinum group metal electrocatalysts for the reaction on the electrodes' surfaces. However, the wide application of the AEMFCs has been impeded by the unsatisfactory stability and performance of the hydroxide-conductive membranes in the past. Recently researchers have made breakthroughs using polyarylene (PA)-based AEMs. This article summarizes the recent advances of a class of AEMs with aromatic backbone without ether bonds, mainly synthesized by Friedel-Crafts polycondensation. Such PA-based AEMs showed high chemical/mechanical stabilities and ionic conductivity, and even the fuel cell with those AEMs showed impressive peak power density of up to 2.58 W cm-2. In this concept article, we classify major strategies for making PA-based AEMs to show the recent trends, highlight synthesis, characterization, and properties, and provide a brief outlook.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA