Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Altern Lab Anim ; 52(5): 276-284, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39262033

RESUMEN

This paper explores what we can learn from the humanities and social sciences about how standards operate in and around science, in order to understand more about how 'the gold standard' can be shifted away from the use of animals in research and testing, and toward New Approach Methodologies (NAMs). These fields allow us to consider potential futures of NAMs as alternatives, replacements, or complements to animal use in testing and research. As we demonstrate, the questions that we pose and how they are framed are as important as the answers that result. Rather than asking how to 'redefine the gold standard', norms and expectations for NAMs must be actively debated and transparently defined. These considerations would be based, in part, on what has been learned in the past from non-human animal models and systems, but also use the norms within the fields from which the NAMs derive in light of the rich broader contexts within which they are being developed. As we argue, notions such as 'a gold standard' are limited and must be replaced by contextualised standards that depend on the scientific, sociocultural and other factors that contribute to our understanding of a particular method (new or otherwise) as 'good' for a particular purpose.


Asunto(s)
Alternativas a las Pruebas en Animales , Ciencias Sociales , Animales , Filosofía , Humanos , Experimentación Animal
2.
Environ Toxicol Chem ; 43(6): 1285-1299, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558477

RESUMEN

Current regulations require that toxicity assessments be performed using standardized toxicity testing methods, often using fish. Recent legislation in both the European Union and United States has mandated that toxicity testing alternatives implement the 3Rs of animal research (replacement, reduction, and refinement) whenever possible. There have been advances in the development of alternatives for freshwater assessments, but there is a lack of analogous developments for marine assessments. One potential alternative testing method is the fish embryo toxicity (FET) test, which uses fish embryos rather than older fish. In the present study, FET methods were applied to two marine model organisms, the sheepshead minnow and the inland silverside. Another potential alternative is the mysid shrimp survival and growth test, which uses an invertebrate model. The primary objective of the present study was to compare the sensitivity of these three potential alternative testing methods to two standardized fish-based tests using 3,4-dichloroaniline (DCA), a common reference toxicant. A secondary objective was to characterize the ontogeny of sheepshead minnows and inland silversides. This provided a temporal and visual guide that can be used to identify appropriately staged embryos for inclusion in FET tests and delineate key developmental events (e.g., somite development, eyespot formation, etc.). Comparison of the testing strategies for assessing DCA indicated that: (1) the standardized fish tests possessed comparable sensitivity to each other; (2) the mysid shrimp tests possessed comparable sensitivity to the standardized fish tests; (3) the sheepshead minnow and inland silverside FET tests were the least sensitive testing strategies employed; and (4) inclusion of sublethal endpoints (i.e., hatchability and pericardial edema) in the marine FETs increased their sensitivity. Environ Toxicol Chem 2024;43:1285-1299. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Embrión no Mamífero , Pruebas de Toxicidad , Contaminantes Químicos del Agua , Animales , Pruebas de Toxicidad/métodos , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Alternativas a las Pruebas en Animales , Cyprinidae , Crustáceos/efectos de los fármacos , Compuestos de Anilina/toxicidad , Peces
3.
Toxicol Sci ; 199(2): 227-245, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38335931

RESUMEN

Chemicals in the systemic circulation can undergo hepatic xenobiotic metabolism, generate metabolites, and exhibit altered toxicity compared with their parent compounds. This article describes a 2-chamber liver-organ coculture model in a higher-throughput 96-well format for the determination of toxicity on target tissues in the presence of physiologically relevant human liver metabolism. This 2-chamber system is a hydrogel formed within each well consisting of a central well (target tissue) and an outer ring-shaped trough (human liver tissue). The target tissue chamber can be configured to accommodate a three-dimensional (3D) spheroid-shaped microtissue, or a 2-dimensional (2D) cell monolayer. Culture medium and compounds freely diffuse between the 2 chambers. Human-differentiated HepaRG liver cells are used to form the 3D human liver microtissues, which displayed robust protein expression of liver biomarkers (albumin, asialoglycoprotein receptor, Phase I cytochrome P450 [CYP3A4] enzyme, multidrug resistance-associated protein 2 transporter, and glycogen), and exhibited Phase I/II enzyme activities over the course of 17 days. Histological and ultrastructural analyses confirmed that the HepaRG microtissues presented a differentiated hepatocyte phenotype, including abundant mitochondria, endoplasmic reticulum, and bile canaliculi. Liver microtissue zonation characteristics could be easily modulated by maturation in different media supplements. Furthermore, our proof-of-concept study demonstrated the efficacy of this coculture model in evaluating testosterone-mediated androgen receptor responses in the presence of human liver metabolism. This liver-organ coculture system provides a practical, higher-throughput testing platform for metabolism-dependent bioactivity assessment of drugs/chemicals to better recapitulate the biological effects and potential toxicity of human exposures.


Asunto(s)
Técnicas de Cocultivo , Hepatocitos , Ensayos Analíticos de Alto Rendimiento , Hígado , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Pruebas de Toxicidad/métodos , Línea Celular , Biomarcadores/metabolismo , Xenobióticos/toxicidad
4.
ALTEX ; 41(1): 119-130, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37658815

RESUMEN

In 2019, the US EPA Administrator issued a directive directing the agency away from reliance on vertebrate tests by 2035, whilst maintaining high-quality human health and environmental risk assessments. There is no accepted approach to achieve this. The decade-long duration of the crop protection (CP) chemical R&D process therefore requires both the invention and application of a modernized approach to those CP chemical projects entering corporate research portfolios by the mid-2020s. We conducted problem formulation discussions with regulatory agency scientists which created the problem statement: "Develop, demonstrate, and implement a modern scientifically sound and robust strategy that applies appropriate and flexible exposure and effects characterization without chemical specific vertebrate tests to reliably address risk, uncertainties, and deficiencies in data and its interpretation with equivalent confidence as do the currently accepted test guidelines and meet the regulatory needs of the agencies". The solution must provide the knowledge needed to confidently conclude human health and environmental protective risk assessments. Exploring this led to a conceptual model involving the creation and parallel submission of a new approach without reliance on chemical-specific vertebrate tests. Assessment in parallel to a traditional package will determine whether it supports some, or all, of the necessary risk management actions. Analysis of any deficiencies will provide valuable feedback to focus development of tools or approaches for subsequent iterations. When found to provide sufficient information, it will form the technical foun­dation of stakeholder engagement to explore acceptance of a new approach to CP chemical risk assessment.


The US EPA, and other regulatory agencies, aim to reduce the use of vertebrate animal tests for assessing risks of crop protection chemicals. There is currently no accepted way to do this. We outline a proposal to perform both the assessment using traditional vertebrate testing and a set of new non-animal methods. These data sets must each be combined with a calculated estimate of user exposure to the pesticide based on its intended use. Comparing the outcome of these two assess­ments will show whether the set of non-animal methods needs to be improved further. When the new approach appears to reliably predict the risks, the different stakeholders must be brought together to assess whether the non-animal methods package is acceptable and can replace the tests on vertebrate animals while maintaining the same level of protection of human health and the environment.


Asunto(s)
Seguridad Química , Humanos , Protección de Cultivos , Medición de Riesgo
5.
Environ Sci Technol ; 57(37): 13721-13731, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37672649

RESUMEN

Toxicity assays using fish cells and embryos continue to gain momentum as a more ethical and informative alternative to fish acute toxicity testing. The goal of our study was to test the accuracy of RTgill-W1 cells and the fathead minnow (Pimephales promelas) embryos to predict actual whole effluent toxicity (WET) in the fathead minnow larvae. The three models were compared concurrently using samples of various origins and treatment types. Additionally, the toxicity of reference toxicants (Cd, Cu, NH3-N, 3,4-dichloraniline, and benzalkonium chloride) spiked into a nontoxic wastewater was compared. The toxicity of reference toxicants was tested in isosmotic and hypoosmotic exposure media in RTgill-W1 cells. Of the 28 wastewater samples, 14 induced a toxic response in fish larvae. Embryos predicted 11 of the 14 wastewater samples toxic to the larvae, whereas RTgill-W1 cells predicted the toxicity of all 14 toxic samples to the larvae. In addition, embryos and RTgill-W1 cells predicted toxicity in two and six additional samples, respectively, that were nontoxic to larvae. Exposures in hypoosmotic medium significantly increased sensitivity of RTgill-W1 cells to all reference toxicants, excluding benzalkonium chloride, compared to exposures in isosmotic medium and showed toxicity levels similar to that in larvae. Thus, hypoosmotic exposure medium should be considered for aquatic toxicity testing applications. Overall, both gill cell and embryo models predicted toxicity in the majority of wastewater samples toxic to larvae and demonstrated their applicability for regulatory WET testing.


Asunto(s)
Cyprinidae , Aguas Residuales , Animales , Compuestos de Benzalconio , Larva , Sustancias Peligrosas
6.
Crit Rev Toxicol ; 53(7): 385-411, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37646804

RESUMEN

Chemical regulatory authorities around the world require systemic toxicity data from acute exposures via the oral, dermal, and inhalation routes for human health risk assessment. To identify opportunities for regulatory uses of non-animal replacements for these tests, we reviewed acute systemic toxicity testing requirements for jurisdictions that participate in the International Cooperation on Alternative Test Methods (ICATM): Brazil, Canada, China, the European Union, Japan, South Korea, Taiwan, and the USA. The chemical sectors included in our review of each jurisdiction were cosmetics, consumer products, industrial chemicals, pharmaceuticals, medical devices, and pesticides. We found acute systemic toxicity data were most often required for hazard assessment, classification, and labeling, and to a lesser extent quantitative risk assessment. Where animal methods were required, animal reduction methods were typically recommended. For many jurisdictions and chemical sectors, non-animal alternatives are not accepted, but several jurisdictions provide guidance to support the use of test waivers to reduce animal use for specific applications. An understanding of international regulatory requirements for acute systemic toxicity testing will inform ICATM's strategy for the development, acceptance, and implementation of non-animal alternatives to assess the health hazards and risks associated with acute toxicity.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37149014

RESUMEN

RTgill-W1 cells cannot be directly exposed to freshwater (FW) or seawater (SW) due to osmotic stress. Adjustments of exposure solutions are needed, but these might reduce the bioavailability and toxicity of pollutants. To facilitate cell polarization and allow direct exposure of water samples, cells were cultured on transwell inserts. Monolayer formation was measured by trans-epithelial electrical resistance (TEER) and an apparent permeability (Papp) assay. At 14 days both TEER and Papp indicated the lowest permeability. Cell viability showed that cells can tolerate apical FW with complete medium (L-15/FBS) in the basolateral compartment but SW reduced cell viability. However, when reference toxicants, silver nitrate and sodium dodecyl benzene sulfonate, were added no toxicity was detected. Increased osmolality in the apical side and presence of proteins indicated diffusion from the basolateral to the apical side. Thus, reduced toxicity was likely caused by complexation with media salts and amino acids. A protein and amino acid free exposure medium (L-15/ex) was applied in the basolateral compartment. However, FW exposures with basolateral L-15/ex resulted in reduced cell viability. To reduce osmotic stress, mannitol was added to apical FW maintaining basolateral L-15/ex which improved cell viability and allowed detection of silver toxicity. Finally, RTgill-W1 cells did not show normal tight junction protein (ZO-1) immunocytochemical staining, which fits with the formation of a leaky epithelium. Overall, culturing of RTgill-W1 cells on transwell inserts allowed direct exposure to mannitol FW medium but showed a reduced sensitivity to toxicants. Thus, exposure on flat bottom wells is recommended for routine toxicity testing.


Asunto(s)
Células Epiteliales , Oncorhynchus mykiss , Animales , Línea Celular , Epitelio , Células Epiteliales/metabolismo , Diferenciación Celular , Supervivencia Celular , Branquias/metabolismo , Oncorhynchus mykiss/metabolismo
8.
Altern Lab Anim ; 51(3): 175-187, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37098721

RESUMEN

Marine sponge extracts are known to contain potentially toxic compounds that have biological activities of possible pharmacological interest. Thus, it is vital that biological models are used for the preliminary toxicity screening of such extracts. The present study reports the use of Allium cepa, a low-cost plant-based in vivo model, to assess the cytotoxicity and genotoxicity of Luffariella herdmani marine sponge crude extract (SCE). Pre-germinated onion bulbs, exposed for 96 hours to different concentrations of SCE (ranging from 0.3125 to 20 µg/ml), were used to determine general cytotoxicity. Root length as well as morphological abnormalities were recorded. Genotoxicity was assessed by exposing the root tips to SCE (0.3125-20 µg/ml) and the appropriate controls for 48 hours, and then staining with acetocarmine. The Mitotic Index (MI), Mitotic Phase Indices (MPIs) and chromosomal aberrations were evaluated and recorded. SCE inhibited A. cepa root growth (EC50 = 10.34 µg/ml) and elicited a mitodepressive effect (LC50 = 1.95 µg/ml) in a dose-dependent and significant manner. In addition, macroscopic alterations as well as chromosomal aberrations were detected. Overall, our findings indicate that L. herdmani crude extract exhibits cytotoxic and genotoxic activity, suggesting that it might contain substances with anti-proliferative/anticancer potential that could be subject to further characterisation.


Asunto(s)
Cebollas , Poríferos , Animales , Raíces de Plantas , Meristema , Aberraciones Cromosómicas
9.
Regul Toxicol Pharmacol ; 134: 105219, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35835397

RESUMEN

Our aim is to develop and apply next generation approaches to skin allergy risk assessment that do not require new animal test data and better quantify uncertainties. Quantitative risk assessment for skin sensitisation uses safety assessment factors to extrapolate from the point of departure to an acceptable human exposure level. It is currently unclear whether these safety assessment factors are appropriate when using non-animal test data to derive a point-of departure. Our skin allergy risk assessment model Defined Approach uses Bayesian statistics to infer a human-relevant metric of sensitiser potency with explicit quantification of uncertainty, using any combination of human repeat insult patch test, local lymph node assay, direct peptide reactivity assay, KeratinoSens™, h-CLAT or U-SENS™ data. Here we describe the incorporation of benchmark exposures pertaining to use of consumer products with clinical data supporting a high/low risk categorisation for skin sensitisation. Margins-of-exposure (potency estimate to consumer exposure level ratio) are regressed against the benchmark risk classifications, enabling derivation of a risk metric defined as the probability that an exposure is low risk. This approach circumvents the use of safety assessment factors and provides a simple and transparent mechanism whereby clinical experience can directly feed-back into risk assessment decisions.


Asunto(s)
Dermatitis Alérgica por Contacto , Alternativas a las Pruebas en Animales , Animales , Teorema de Bayes , Benchmarking , Toma de Decisiones , Dermatitis Alérgica por Contacto/etiología , Humanos , Medición de Riesgo , Piel
10.
Environ Toxicol Chem ; 41(9): 2259-2272, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35703088

RESUMEN

Cationic polymers are considered by the scientific and regulatory communities as a group of greater interest amongst the polymers in commerce. As a category, relatively little hazard information is available in the public literature. Very few examples exist of published, high-quality polymer characterization and quantification of exposure. In the present study we describe a series of fish embryo toxicity (FET) and fish gill cytotoxicity assays used to establish a baseline understanding of several representative polyquaternium categories (PQ-6, PQ-10, PQ-16) in animal alternative models, accompanied by high-quality analytical characterization. Materials were chosen to encompass a range of molecular weights and charge densities to determine the influence of test material characteristics on toxicity. Both chorionated and dechorionated FET assays were generally similar to published acute fish toxicity data. Toxicity was correlated with cationic polymer charge density, and not with molecular weight, and was a combination of physical effects and likely toxicity at the site of action. Toxicity could be ameliorated by humic acid in a dose-dependent manner. Fish gill cytotoxicity results were orders of magnitude less sensitive than FET test responses. Environ Toxicol Chem 2022;41:2259-2272. © 2022 SETAC.


Asunto(s)
Embrión no Mamífero , Branquias , Animales , Ecotoxicología , Peces , Polímeros/toxicidad , Pruebas de Toxicidad Aguda/métodos
11.
Altern Lab Anim ; 50(2): 156-171, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35410493

RESUMEN

The fact that animal models fail to replicate human disease faithfully is now being widely accepted by researchers across the globe. As a result, they are exploring the use of alternatives to animal models. The time has come to refine our experimental practices, reduce the numbers and eventually replace the animals used in research with human-derived and human-relevant 3-D disease models. Oncoseek Bio-Acasta Health, which is an innovative biotechnology start-up company based in Hyderabad and Vishakhapatnam, India, organises an annual International Conference on 3Rs Research and Progress. In 2021, this conference was on 'Advances in Research Animal Models and Cutting-Edge Research in Alternatives'. This annual conference is a platform that brings together eminent scientists and researchers from various parts of the world, to share recent advances from their research in the field of alternatives to animals including new approach methodologies, and to promote practices to help refine animal experiments where alternatives are not available. This report presents the proceedings of the conference, which was held in hybrid mode (i.e. virtual and in-person) in November 2021.


Asunto(s)
Experimentación Animal , Alternativas a las Pruebas en Animales , Alternativas a las Pruebas en Animales/métodos , Bienestar del Animal , Animales , Humanos , India , Modelos Animales
12.
Front Toxicol ; 4: 838466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295212

RESUMEN

New Approach Methodologies (NAMs) promise to offer a unique opportunity to enable human-relevant safety decisions to be made without the need for animal testing in the context of exposure-driven Next Generation Risk Assessment (NGRA). Protecting human health against the potential effects a chemical may have on embryo-foetal development and/or aspects of reproductive biology using NGRA is particularly challenging. These are not single endpoint or health effects and risk assessments have traditionally relied on data from Developmental and Reproductive Toxicity (DART) tests in animals. There are numerous Adverse Outcome Pathways (AOPs) that can lead to DART, which means defining and developing strict testing strategies for every AOP, to predict apical outcomes, is neither a tenable goal nor a necessity to ensure NAM-based safety assessments are fit-for-purpose. Instead, a pragmatic approach is needed that uses the available knowledge and data to ensure NAM-based exposure-led safety assessments are sufficiently protective. To this end, the mechanistic and biological coverage of existing NAMs for DART were assessed and gaps to be addressed were identified, allowing the development of an approach that relies on generating data relevant to the overall mechanisms involved in human reproduction and embryo-foetal development. Using the knowledge of cellular processes and signalling pathways underlying the key stages in reproduction and development, we have developed a broad outline of endpoints informative of DART. When the existing NAMs were compared against this outline to determine whether they provide comprehensive coverage when integrated in a framework, we found them to generally cover the reproductive and developmental processes underlying the traditionally evaluated apical endpoint studies. The application of this safety assessment framework is illustrated using an exposure-led case study.

13.
Integr Environ Assess Manag ; 18(2): 442-458, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34292658

RESUMEN

Many regulations are beginning to explicitly require investigation of a chemical's endocrine-disrupting properties as a part of the safety assessment process for substances already on or about to be placed on the market. Different jurisdictions are applying distinct approaches. However, all share a common theme requiring testing for endocrine activity and adverse effects, typically involving in vitro and in vivo assays on selected endocrine pathways. For ecotoxicological evaluation, in vivo assays can be performed across various animal species, including mammals, amphibians, and fish. Results indicating activity (i.e., that a test substance may interact with the endocrine system) from in vivo screens usually trigger further higher-tier in vivo assays. Higher-tier assays provide data on adverse effects on relevant endpoints over more extensive parts of the organism's life cycle. Both in vivo screening and higher-tier assays are animal- and resource-intensive and can be technically challenging to conduct. Testing large numbers of chemicals will inevitably result in the use of large numbers of animals, contradicting stipulations set out within many regulatory frameworks that animal studies be conducted as a last resort. Improved strategies are urgently required. In February 2020, the UK's National Centre for the 3Rs and the Health and Environmental Sciences Institute hosted a workshop ("Investigating Endocrine Disrupting Properties in Fish and Amphibians: Opportunities to Apply the 3Rs"). Over 50 delegates attended from North America and Europe, across academia, laboratories, and consultancies, regulatory agencies, and industry. Challenges and opportunities in applying refinement and reduction approaches within the current animal test guidelines were discussed, and utilization of replacement and/or new approach methodologies, including in silico, in vitro, and embryo models, was explored. Efforts and activities needed to enable application of 3Rs approaches in practice were also identified. This article provides an overview of the workshop discussions and sets priority areas for follow-up. Integr Environ Assess Manag 2022;18:442-458. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Asunto(s)
Disruptores Endocrinos , Anfibios , Animales , Ecotoxicología , Disruptores Endocrinos/análisis , Sistema Endocrino/química , Medición de Riesgo/métodos
14.
Environ Pollut ; 295: 118667, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34896397

RESUMEN

Current approaches in chemical hazard assessment face significant challenges because they rely on live animal testing, which is time-consuming, expensive, and ethically questionable. These concerns serve as an impetus to develop new approach methodologies (NAMs) that do not rely on live animal tests. This study explored a molecular benchmark dose (BMD) approach using a 7-day embryo-larval fathead minnow (FHM) assay to derive transcriptomic points-of-departure (tPODs) to predict apical BMDs of fluoxetine (FLX), a highly prescribed and potent selective serotonin reuptake inhibitor frequently detected in surface waters. Fertilized FHM embryos were exposed to graded concentrations of FLX (confirmed at < LOD, 0.19, 0.74, 3.38, 10.2, 47.5 µg/L) for 32 days. Subsets of fish were subjected to omics and locomotor analyses at 7 days post-fertilization (dpf) and to histological and biometric measurements at 32 dpf. Enrichment analyses of transcriptomics and proteomics data revealed significant perturbations in gene sets associated with serotonergic and axonal functions. BMD analysis resulted in tPOD values of 0.56 µg/L (median of the 20 most sensitive gene-level BMDs), 5.0 µg/L (tenth percentile of all gene-level BMDs), 7.51 µg/L (mode of the first peak of all gene-level BMDs), and 5.66 µg/L (pathway-level BMD). These tPODs were protective of locomotor and reduced body weight effects (LOEC of 10.2 µg/L) observed in this study and were reflective of chronic apical BMDs of FLX reported in the literature. Furthermore, the distribution of gene-level BMDs followed a bimodal pattern, revealing disruption of sensitive neurotoxic pathways at low concentrations and metabolic pathway perturbations at higher concentrations. This is one of the first studies to derive protective tPODs for FLX using a short-term embryo assay at a life stage not considered to be a live animal under current legislations.


Asunto(s)
Cyprinidae , Contaminantes Químicos del Agua , Animales , Cyprinidae/genética , Fluoxetina/toxicidad , Larva , Transcriptoma
15.
Toxicol Sci ; 186(1): 29-42, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-34935973

RESUMEN

Humans are consistently exposed to thousands of untested chemicals that have been detected in the follicular fluid of the ovaries, and can disrupt reproductive health. Human granulosa cells (GCs) are the functional unit of the ovarian follicle with steroidogenic and signaling activities, and play a pivotal role in oocyte development. During follicle progression, GCs multiply to form a 3D avascular structure, and establish gap junction intercellular communication (GJIC) that is critical to maintaining optimal viability and function. We developed a high-throughput in vitro platform of human GCs for the screening of chemicals that can impact GJIC and estradiol (E2) production of human granulosa. Our granulosa 3D microtissues fabricated with human ovarian granulosa-like tumor KGN cells are multicell-layered structures that mimic the avascular granulosa layers surrounding the oocyte. These microtissues robustly expressed the steroidogenic CYP19 aromatase enzyme and GJIC intercellular membrane channel, connexin 43. Granulosa microtissues produced E2 at rates comparable to primary human GCs as previously reported. E2 production was suppressed by the CYP19 inhibitor, letrozole, and induced by CYP19 activators, bisphenol A at 100 µM, and genistein at 100 µM. Granulosa microtissues displayed active GJIC function, as demonstrated by the connexin 43-dependent diffusion of calcein fluorescent dye from microtissue surface to the core using high-throughput confocal microscopy in conjunction with our open-sourced automated image analysis tool. Overall, our 3D human granulosa screening platform is highly promising for predictive and efficient in vitro toxicity testing to screen for chemicals that contaminate follicular fluid and may affect fertility.


Asunto(s)
Estradiol , Uniones Comunicantes , Animales , Comunicación Celular , Femenino , Células de la Granulosa , Oocitos
16.
Regul Toxicol Pharmacol ; 127: 105075, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34728330

RESUMEN

Next generation Risk Assessment (NGRA) is an exposure-led, hypothesis-driven approach which integrates new approach methodologies (NAMs) to assure safety without generating animal data. This hypothetical skin allergy risk assessment of two consumer products - face cream containing 0.1% coumarin and deodorant containing 1% coumarin - demonstrates the application of our skin allergy NGRA framework which incorporates our Skin Allergy Risk Assessment (SARA) Model. SARA uses Bayesian statistics to provide a human relevant point of departure and risk metric for a given chemical exposure based upon input data that can include both NAMs and historical in vivo studies. Regardless of whether NAM or in vivo inputs were used, the model predicted that the face cream and deodorant exposures were low and high risk respectively. Using only NAM data resulted in a minor underestimation of risk relative to in vivo. Coumarin is a predicted pro-hapten and consequently, when applying this mechanistic understanding to the selection of NAMs the discordance in relative risk could be minimized. This case study demonstrates how integrating a computational model and generating bespoke NAM data in a weight of evidence framework can build confidence in safety decision making.


Asunto(s)
Teorema de Bayes , Cosméticos/toxicidad , Cumarinas/toxicidad , Dermatitis por Contacto/patología , Modelos Teóricos , Alternativas a las Pruebas en Animales , Técnicas de Cultivo de Célula , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Hígado/efectos de los fármacos , Medición de Riesgo , Pruebas de Irritación de la Piel
17.
Foods ; 10(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34441744

RESUMEN

Protein calories consumed by people all over the world approximate 15-20% of their energy intake. This makes protein a major nutritional imperative. Today, we are facing an unprecedented challenge to produce and distribute adequate protein to feed over nine billion people by 2050, in an environmentally sustainable and affordable way. Plant-based proteins present a promising solution to our nutritional needs due to their long history of crop use and cultivation, lower cost of production, and easy access in many parts of the world. However, plant proteins have comparatively poor functionality, defined as poor solubility, foaming, emulsifying, and gelling properties, limiting their use in food products. Relative to animal proteins, including dairy products, plant protein technology is still in its infancy. To bridge this gap, advances in plant protein ingredient development and the knowledge to construct plant-based foods are sorely needed. This review focuses on some salient features in the science and technology of plant proteins, providing the current state of the art and highlighting new research directions. It focuses on how manipulating plant protein structures during protein extraction, fractionation, and modification can considerably enhance protein functionality. To create novel plant-based foods, important considerations such as protein-polysaccharide interactions, the inclusion of plant protein-generated flavors, and some novel techniques to structure plant proteins are discussed. Finally, the attention to nutrition as a compass to navigate the plant protein roadmap is also considered.

18.
ILAR J ; 62(1-2): 7-16, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34181728

RESUMEN

Animals have been closely observed by humans for at least 17 000 years to gain critical knowledge for human and later animal survival. Routine scientific observations of animals as human surrogates began in the late 19th century driven by increases in new compounds resulting from synthetic chemistry and requiring characterization for potential therapeutic utility and safety. Statistics collected by the United States Department of Agriculture's Animal and Plant Health Inspection Service and United Kingdom Home Office show that animal usage in biomedical research and teaching activities peaked after the mid-20th century and thereafter fell precipitously until the early 21st century, when annual increases (in the UK) were again observed, this time driven by expansion of genetically modified animal technologies. The statistics also show a dramatic transfer of research burden in the 20th and 21st centuries away from traditional larger and more publicly sensitive species (dogs, cats, non-human primates, etc) towards smaller, less publicly sensitive mice, rats, and fish. These data show that new technology can produce multi-faceted outcomes to reduce and/or to increase annual animal usage and to redistribute species burden in biomedical research. From these data, it is estimated that annual total vertebrate animal usage in biomedical research and teaching in the United States was 15 to 25 million per year during 2001-2018. Finally, whereas identification and incorporation of non-animal alternatives are products of, but not an integral component of, the animal research cycle, they replace further use of animals for specific research and product development purposes and create their own scientific research cycles, but are not necessarily a substitute for animals or humans for discovery, acquisition, and application of new (eg, previously unknown and/or unsuspected) knowledge critical to further advance human and veterinary medicine and global species survival.


Asunto(s)
Experimentación Animal , Investigación Biomédica , Animales , Perros , Ratones , Ratas , Estados Unidos
19.
Cell Chem Biol ; 28(3): 424-430, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33529582

RESUMEN

Phenotypic drug discovery (PDD) uses biological systems directly for new drug screening. While PDD has proved effective in the discovery of drugs with novel mechanisms, for broader adoption, key challenges need resolution: progression of poorly qualified leads and overloaded pipelines due to lack of effective tools to process and prioritize hits; and advancement of leads with undesirable mechanisms that fail at more expensive stages of discovery. Here I discuss how human-based phenotypic platforms are being applied throughout the discovery process for hit triage and prioritization, for elimination of hits with unsuitable mechanisms, and for supporting clinical strategies through pathway-based decision frameworks. Harnessing the data generated in these platforms can also fuel a deeper understanding of drug efficacy and toxicity mechanisms. As these approaches increase in use, they will gain in power for driving better decisions, generating better leads faster and in turn promoting greater adoption of PDD.


Asunto(s)
Descubrimiento de Drogas , Preparaciones Farmacéuticas/química , Evaluación Preclínica de Medicamentos , Humanos , Fenotipo
20.
Altern Lab Anim ; 48(1_suppl): 18S-25S, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33106014

RESUMEN

The Lush Prize supports animal-free testing by awarding money prizes of up to £350,000 per year to the most effective projects and individuals who have been working towards the goal of replacing animals in product or ingredient safety testing. Since its inception in 2012, the Lush Prize has distributed almost £2 million. Prizes are awarded for developments in five strategic areas: Science; Lobbying; Training; Public Awareness; and Young Researchers. In 2015, the judges also awarded a Black Box prize for the development of the skin sensitisation Adverse Outcome Pathway and its associated in vitro assays. The Science Prize is awarded to researchers whose work the judging panel believe to have made the most significant contribution, in the preceding year, to the replacement of animal testing. This 2018 Science Background paper outlines the research projects that were presented to the Prize judges as potential candidates for the 2018 Lush Science Prize award. To obtain an overview of developments in the field of animal replacement in toxicity research, recent work by the relevant scientific institutions and projects in this area, including the OECD, CAAT, ECVAM, UK NC3Rs, US Tox21 Programme, the ToxCast programme and EU-ToxRisk, was reviewed. Recent developments in toxicity testing research were investigated by searching the relevant literature. Abstracts from conferences focusing on animal replacement in toxicity testing that were held in the preceding 12 months, were also analysed, including those from the 2017 10th World Congress on Alternatives and Animals in the Life Sciences and the 2018 Society of Toxicology annual conference.


Asunto(s)
Alternativas a las Pruebas en Animales , Distinciones y Premios , Animales , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA