Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Front Physiol ; 15: 1417719, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989048

RESUMEN

Introduction: Space is a unique environment characterized by isolation from community life and exposure to circadian misalignment, microgravity, and space radiation. These multiple differences from those experienced on the earth may cause systemic and local tissue stress. Autonomic nerves, including sympathetic and parasympathetic nerves, regulate functions in multiple organs. Saliva is secreted from the salivary gland, which is regulated by autonomic nerves, and plays several important roles in the oral cavity and digestive processes. The balance of the autonomic nervous system in the seromucous glands, such as the submandibular glands, precisely controls serous and mucous saliva. Psychological stress, radiation damage, and other triggers can cause an imbalance in salivary secretion systems. A previous study reported that amylase is a stress marker in behavioral medicine and space flight crews; however, the detailed mechanisms underlying amylase regulation in the space environment are still unknown. Methods: In this study, we aimed to elucidate how lunar gravity (1/6 g) changes mRNA expression patterns in the salivary gland. Using a multiple artificial gravity research system during space flight in the International Space Station, we studied the effects of two different gravitational levels, lunar and Earth gravity, on the submandibular glands of mice. All mice survived, returned to Earth from space, and their submandibular glands were collected 2 days after landing. Results: We found that lunar gravity induced the expression of the salivary amylase gene Amy1; however, no increase in Aqp5 and Ano1, which regulate water secretion, was observed. In addition, genes involved in the exocrine system, such as vesicle-associated membrane protein 8 (Vamp8) and small G proteins, including Rap1 and Rab families, were upregulated under lunar gravity. Conclusion: These results imply that lunar gravity upregulates salivary amylase secretion via Rap/Rab signaling and exocytosis via Vamp8. Our study highlights Amy1 as a potential candidate marker for stress regulation in salivary glands in the lunar gravity environment.

2.
Gut Microbes ; 16(1): 2367301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913541

RESUMEN

Resistant starch (RS) consumption can have beneficial effects on metabolic health, but the response, in terms of effects on the gut microbiota and host physiology, varies between individuals. Factors predicting the response to RS are not yet established and would be useful for developing precision nutrition approaches that maximize the benefits of dietary fiber intake. We sought to identify predictors of gut microbiota response to RS supplementation. We enrolled 76 healthy adults into a 7-week crossover study with 59 individuals completing the study. Participants consumed RS type 2 (RS2), RS type 4 (RS4), and digestible starch, for 10 d each with 5-d washout periods in between. We collected fecal and saliva samples and food records during each treatment period. We performed 16S rRNA gene sequencing and measured fecal short-chain fatty acids (SCFAs), salivary amylase (AMY1) gene copy number, and salivary amylase activity (SAA). Dietary fiber intake was predictive of the relative abundance of several amplicon sequence variants (ASVs) at the end of both RS treatments. AMY1-related metrics were not predictive of response to RS. SAA was only predictive of the relative abundance of one ASV after digestible starch supplementation. Interestingly, SCFA concentrations increased the most during digestible starch supplementation. Treatment order (the order of consumption of RS2 and RS4), alpha diversity, and a subset of ASVs were predictive of SCFA changes after RS supplementation. Based on our findings, dietary fiber intake and gut microbiome composition would be informative if assessed prior to recommending RS supplementation because these data can be used to predict changes in specific ASVs and fecal SCFA concentrations. These findings lay a foundation to support the premise that using a precision nutrition approach to optimize the benefits of dietary fibers such as RS could be an effective strategy to compensate for the low consumption of dietary fiber nationwide.


Asunto(s)
Bacterias , Estudios Cruzados , Fibras de la Dieta , Suplementos Dietéticos , Ácidos Grasos Volátiles , Heces , Microbioma Gastrointestinal , ARN Ribosómico 16S , Saliva , Almidón , Humanos , Fibras de la Dieta/metabolismo , Fibras de la Dieta/administración & dosificación , Masculino , Femenino , Heces/microbiología , Heces/química , Adulto , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Almidón/metabolismo , Saliva/microbiología , Saliva/química , Suplementos Dietéticos/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , ARN Ribosómico 16S/genética , Adulto Joven , Persona de Mediana Edad , Almidón Resistente/metabolismo
3.
Clin Oral Investig ; 28(1): 25, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38147184

RESUMEN

OBJECTIVE: To establish the possible relation between total caries (TC) and caries severity (CS) with the AMY1 gene copy number (AMY1GCN). MATERIALS AND METHODS: This was an observational, cross-sectional, population-based, and association study with 303 participants. Each participant underwent a complete anamnesis and stomatological check-up, and peripheral blood was obtained to extract gDNA. TC and CS were determined as the number of caries at the dental exploration and the number of dental surfaces affected by caries, respectively, and AMY1GCN was determined by qPCR. RESULTS: We found an elevated caries prevalence (92.7%); TC and CS were 8 ± 10 and 10 ± 13 (median ± IR). There were higher TC and CS in those participants with AMY1GCN above the mean value (0.02 and 0.01 p values, respectively). A positive correlation between TC and CS with AMY1GCN (0.11 and 0.125 r values, 0.03 and 0.01 p values, respectively) was found, in addition to an association between TC and CS with AMY1GCN (1.5 and 1.6 OR values, 0.48 and 0.26 p values, respectively). CONCLUSION: TC and CS were positively related to the AMY1GCN. CLINICAL RELEVANCE: Dental caries has a high prevalence and a multifactorial etiology and has been related to a genetic component. Indeed, the salivary enzyme alpha-amylase could play a significant role in caries susceptibility, considering that its codifying gene (AMY1) can show variation in its gene copy number. This can be considered an important factor for the development of caries at a genetic level.


Asunto(s)
Susceptibilidad a Caries Dentarias , Caries Dental , alfa-Amilasas Salivales , Caries Dental/enzimología , Caries Dental/epidemiología , Caries Dental/genética , Caries Dental/patología , alfa-Amilasas Salivales/genética , alfa-Amilasas Salivales/metabolismo , Estudios Transversales , Humanos , Masculino , Femenino , Adolescente , Adulto Joven , Adulto , Gravedad del Paciente , Susceptibilidad a Caries Dentarias/genética , Prevalencia
4.
BMC Med ; 21(1): 27, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36691017

RESUMEN

BACKGROUND: Salivary amylase, encoded by the AMY1 gene, initiate the digestion of starch. Whether starch intake or AMY1 copy number is related to disease risk is currently rather unknown. The aim was to investigate the association between starch intake and AMY1 copy number and risk of cardiovascular disease (CVD) and mortality and whether there is an interaction. In addition, we aim to identify CVD-related plasma proteins associated with starch intake and AMY1 copy number. METHODS: This prospective cohort study used data from 21,268 participants from the Malmö Diet and Cancer Study. Dietary data were collected through a modified diet history method and incident CVD and mortality were ascertained through registers. AMY1 gene copy number was determined by droplet digital polymerase chain reaction, a risk score of 10 genetic variants in AMY1 was measured, and a total of 88 selected CVD-related proteins were measured. Cox proportional hazards regression was used to analyze the associations of starch intake and AMY1 copy number with disease risk. Linear regression was used to identify plasma proteins associated with starch intake and AMY1 copy number. RESULTS: Over a median of 23 years' follow-up, 4443 individuals developed CVD event and 8125 died. After adjusting for potential confounders, a U-shape association between starch intake and risk of CVD (P-nonlinearity = 0.001) and all-cause mortality (P-nonlinearity = 0.03) was observed. No significant association was found between AMY1 copy number and risk of CVD and mortality, and there were no interactions between starch intake and AMY1 copy number (P interaction > 0.23). Among the 88 plasma proteins, adrenomedullin, interleukin-1 receptor antagonist protein, fatty acid-binding protein, leptin, and C-C motif chemokine 20 were associated with starch intake after adjusting for multiple testing. CONCLUSIONS: In this large prospective study among Swedish adults, a U-shaped association between starch intake and risk of CVD and all-cause mortality was found. Several plasma proteins were identified which might provide information on potential pathways for such association. AMY1 copy number was not associated with CVD risk or any of the plasma proteins, and there was no interaction between starch intake and AMY1 copy number on disease risk.


Asunto(s)
Enfermedades Cardiovasculares , alfa-Amilasas Salivales , Humanos , Variaciones en el Número de Copia de ADN , Almidón/metabolismo , Estudios Prospectivos , Amilasas/genética , alfa-Amilasas Salivales/genética , alfa-Amilasas Salivales/metabolismo , Dosificación de Gen , Proteínas Sanguíneas/genética
5.
Front Nutr ; 9: 947349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36071931

RESUMEN

Background: Salivary amylase (AMY1) gene copy number (CN) and Prevotella abundance in the gut are involved in carbohydrate digestion in the upper and lower gastrointestinal tract, respectively; and have been suggested as prognostic biomarkers for weight loss among overweight individuals consuming diets rich in fiber and wholegrains. Objective: We hypothesized that Prevotella abundance would be linked to greater loss of body fat after wholegrain consumption among individuals with low AMY1 CN, but not in those with high AMY1 CN. Methods: We reanalyzed data from two independent randomized ad libitum wholegrain interventions (fiber intake ∼33 g/d for 6-8 weeks), to investigate the relationship between baseline Prevotella abundance and body fat loss among healthy, overweight participants stratified into two groups by median AMY1 CN. Individuals with no detected Prevotella spp. were excluded from the main analysis. Results: In both studies, individuals with low AMY1 CN exhibited a positive correlation between baseline Prevotella abundance and fat loss after consuming the wholegrain diet (r > 0.5, P < 0.05), but no correlation among participants with high AMY1 CN (P ≥ 0.6). Following consumption of the refined wheat control diets, there were no associations between baseline Prevotella abundance and changes in body fat in any of the AMY1 groups. Conclusion: These results suggest that Prevotella abundance together with AMY1 CN can help predict fat loss in response to ad libitum wholegrain diets, highlighting the potential of these biomarkers in personalized obesity management.

6.
Front Physiol ; 13: 860037, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620595

RESUMEN

The neuropeptide calcitonin gene-related peptide (CGRP) is expressed in the trigeminal ganglia, a key site in craniofacial pain and migraine. CGRP potently activates two receptors: the CGRP receptor and the AMY1 receptor. These receptors are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with either the calcitonin receptor-like receptor (CLR) to form the CGRP receptor or the calcitonin receptor (CTR) to form the AMY1 receptor. The expression of the CGRP receptor in trigeminal ganglia has been described in several studies; however, there is comparatively limited data available describing AMY1 receptor expression and in which cellular subtypes it is found. This research aimed to determine the relative distributions of the AMY1 receptor subunit, CTR, and CGRP in neurons or glia in rat, mouse and human trigeminal ganglia. Antibodies against CTR, CGRP and neuronal/glial cell markers were applied to trigeminal ganglia sections to investigate their distribution. CTR-like and CGRP-like immunoreactivity were observed in both discrete and overlapping populations of neurons. In rats and mice, 30-40% of trigeminal ganglia neurons displayed CTR-like immunoreactivity in their cell bodies, with approximately 78-80% of these also containing CGRP-like immunoreactivity. Although human cases were more variable, a similar overall pattern of CTR-like immunoreactivity to rodents was observed in the human trigeminal ganglia. CTR and CGRP appeared to be primarily colocalized in small to medium sized neurons, suggesting that colocalization of CTR and CGRP may occur in C-fiber neurons. CGRP-like or CTR-like immunoreactivity were not typically observed in glial cells. Western blotting confirmed that CTR was expressed in the trigeminal ganglia of all three species. These results confirm that CTR is expressed in trigeminal ganglia neurons. The identification of populations of neurons that express both CGRP and CTR suggests that CGRP could act in an autocrine manner through a CTR-based receptor, such as the AMY1 receptor. Overall, this suggests that a trigeminal ganglia CTR-based receptor may be activated during migraine and could therefore represent a potential target to develop treatments for craniofacial pain and migraine.

7.
Cephalalgia ; 42(9): 815-826, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35410497

RESUMEN

BACKGROUND AND AIM: Therapeutics that reduce calcitonin gene-related peptide activity are effective migraine treatments. However, gaps remain in our understanding of the molecular mechanisms that link calcitonin gene-related peptide to migraine. The amylin 1 receptor responds potently to calcitonin gene-related peptide, and to the related peptide amylin, but its role in relation to either peptide or to migraine is unclear. We sought to better understand the expression of the amylin 1 receptor protein subunit, the calcitonin receptor, in the rodent brain. METHODS: We profiled three antibodies for immunodetection of calcitonin receptor, using immunocytochemistry, western blotting, and calcitonin receptor conditional knockout mouse tissue. Selected migraine-relevant rat brain regions were then examined for calcitonin receptor-like immunoreactivity. RESULTS: All three antibodies detected calcitonin receptor protein but only one (188/10) produced robust immunostaining in rodent brain, under the conditions used. Calcitonin receptor-like immunoreactivity was apparent in the rat brainstem and midbrain including the locus coeruleus, periaqueductal grey and spinal trigeminal nucleus. CONCLUSIONS: Anti-calcitonin receptor antibodies require comprehensive profiling to ensure confidence in the detection of calcitonin receptor. Using a validated antibody, calcitonin receptor-like immunoreactivity was detected in several brain regions relevant to migraine. Further research is needed to understand the functional consequences of calcitonin receptor expression for calcitonin gene-related peptide or amylin physiology and pathophysiology.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Animales , Encéfalo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Ratones , Ratas , Receptores de Calcitonina/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Receptores de Polipéptido Amiloide de Islotes Pancreáticos
8.
Front Pharmacol ; 13: 832589, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341216

RESUMEN

Signaling through calcitonin gene-related peptide (CGRP) receptors is associated with pain, migraine, and energy expenditure. Small molecule and monoclonal antibody CGRP receptor antagonists that block endogenous CGRP action are in clinical use as anti-migraine therapies. By comparison, the potential utility of peptide antagonists has received less attention due to suboptimal pharmacokinetic properties. Lipidation is an established strategy to increase peptide half-life in vivo. This study aimed to explore the feasibility of developing lipidated CGRP peptide antagonists that retain receptor antagonist activity in vitro and attenuate endogenous CGRP action in vivo. CGRP peptide analogues based on the archetypal CGRP receptor antagonist, CGRP8-37, were palmitoylated at the N-terminus, position 24, and near the C-terminus at position 35. The antagonist activities of the lipidated peptide analogues were tested in vitro using transfected Cos-7 cells expressing either the human or mouse CGRP receptor, amylin subtype 1 (AMY1) receptor, adrenomedullin (AM) receptors, or calcitonin receptor. Antagonist activities were also evaluated in SK-N-MC cells that endogenously express the human CGRP receptor. Lipidated peptides were then tested for their ability to antagonize endogenous CGRP action in vivo using a capsaicin-induced dermal vasodilation (CIDV) model in C57/BL6J mice. All lipidated peptides except for the C-terminally modified analogue retained potent antagonist activity compared to CGRP8-37 towards the CGRP receptor. The lipidated peptides also retained, and sometimes gained, antagonist activities at AMY1, AM1 and AM2 receptors. Several lipidated peptides produced robust inhibition of CIDV in mice. This study demonstrates that selected lipidated peptide antagonists based on αCGRP8-37 retain potent antagonist activity at the CGRP receptor and are capable of inhibition of endogenous CGRP action in vivo. These findings suggest that lipidation can be applied to peptide antagonists, such as αCGRP8-37 and are a potential strategy for antagonizing CGRP action.

9.
Trends Food Sci Technol ; 120: 254-264, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35210697

RESUMEN

BACKGROUND: Starch is a principal dietary source of digestible carbohydrate and energy. Glycaemic and insulinaemic responses to foods containing starch vary considerably and glucose responses to starchy foods are often described by the glycaemic index (GI) and/or glycaemic load (GL). Low GI/GL foods are beneficial in the management of cardiometabolic disorders (e.g., type 2 diabetes, cardiovascular disease). Differences in rates and extents of digestion of starch-containing foods will affect postprandial glycaemia. SCOPE AND APPROACH: Amylolysis kinetics are influenced by structural properties of the food matrix and of starch itself. Native (raw) semi-crystalline starch is digested slowly but hydrothermal processing (cooking) gelatinises the starch and greatly increases its digestibility. In plants, starch granules are contained within cells and intact cell walls can limit accessibility of water and digestive enzymes hindering gelatinisation and digestibility. In vitro studies of starch digestion by α-amylase model early stages in digestion and can suggest likely rates of digestion in vivo and expected glycaemic responses. Reports that metabolic responses to dietary starch are influenced by α-amylase gene copy number, heightens interest in amylolysis. KEY FINDINGS AND CONCLUSIONS: This review shows how enzyme kinetic strategies can provide explanations for differences in digestion rate of different starchy foods. Michaelis-Menten and Log of Slope analyses provide kinetic parameters (e.g., K m and k cat /K m ) for evaluating catalytic efficiency and ease of digestibility of starch by α-amylase. Suitable kinetic methods maximise the information that can be obtained from in vitro work for predictions of starch digestion and glycaemic responses in vivo.

10.
Br J Pharmacol ; 179(3): 454-459, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34076887

RESUMEN

The development of several drugs that target the calcitonin gene-related peptide (CGRP) system has been a major breakthrough in the pharmacological management of migraine. These are divided into two major classes, antibodies which bind to the CGRP peptide, preventing it from activating CGRP receptors and receptor antagonists. Within the receptor antagonist class, there are two mechanisms of action, small molecule receptor antagonists and an antibody antagonist. This mini-review considers the pharmacology of these receptor targeted antagonist drugs at the CGRP receptor and closely related AMY1 receptor, at which CGRP may also act. The antagonists are most potent at the CGRP receptor but can also show antagonism of the AMY1 receptor. However, important data are missing and selectivity parameters cannot be provided for all antagonists. The clinical implications of AMY1 receptor antagonism are unknown, but we urge consideration of this receptor as a potential contributing factor to CGRP and antagonist drug actions. LINKED ARTICLES: This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.


Asunto(s)
Trastornos Migrañosos , Receptores de Péptido Relacionado con el Gen de Calcitonina , Péptido Relacionado con Gen de Calcitonina , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Proteína Similar al Receptor de Calcitonina , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo
11.
Genes Nutr ; 16(1): 21, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789141

RESUMEN

BACKGROUND: Copy number (CN) variation (CNV) of the salivary amylase gene (AMY1) influences the ability to digest starch and may influence glucose homeostasis, obesity and gut microbiota composition. Hence, the aim was to examine the association of AMY1 CNV with fasting glucose, BMI, and gut microbiota composition considering habitual starch intake and to investigate the effect of AMY1 CNV on the postprandial response after two different starch doses. METHODS: The Malmö Offspring Study (n = 1764, 18-71 years) was used to assess interaction effects between AMY1 CNV (genotyped by digital droplet polymerase chain reaction) and starch intake (assessed by 4-day food records) on fasting glucose, BMI, and 64 gut bacteria (16S rRNA sequencing). Participants with low (≤ 4 copies, n = 9) and high (≥ 10 copies, n = 10) AMY1 CN were recruited for a crossover meal study to compare postprandial glycemic and insulinemic responses to 40 g and 80 g starch from white wheat bread. RESULTS: In the observational study, no overall associations were found between AMY1 CNV and fasting glucose, BMI, or gut microbiota composition. However, interaction effects between AMY1 CNV and habitual starch intake on fasting glucose (P = 0.03) and BMI (P = 0.05) were observed, suggesting inverse associations between AMY1 CNV and fasting glucose and BMI at high starch intake levels and positive association at low starch intake levels. No associations with the gut microbiota were observed. In the meal study, increased postprandial glucose (P = 0.02) and insulin (P = 0.05) were observed in those with high AMY1 CN after consuming 40 g starch. This difference was smaller and nonsignificant after consuming 80 g starch. CONCLUSIONS: Starch intake modified the observed association between AMY1 CNV and fasting glucose and BMI. Furthermore, depending on the starch dose, a higher postprandial glucose and insulin response was observed in individuals with high AMY1 CN than in those with low AMY1 CN. TRIAL REGISTRATION: ClinicalTrials.gov , NCT03974126 . Registered 4 June 2019-retrospectively registered.

12.
Cephalalgia ; 41(5): 499-514, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33626922

RESUMEN

BACKGROUND: The clinical efficacy of migraine therapeutic agents directed towards the calcitonin-gene related peptide (CGRP) pathway has confirmed the key role of this axis in migraine pathogenesis. Three antibodies against CGRP - fremanezumab, galcanezumab and eptinezumab - and one antibody against the CGRP receptor, erenumab, are clinically approved therapeutics for the prevention of migraine. In addition, two small molecule CGRP receptor antagonists, ubrogepant and rimegepant, are approved for acute migraine treatment. Targeting either the CGRP ligand or receptor is efficacious for migraine treatment; however, a comparison of the mechanism of action of these therapeutic agents is lacking in the literature. METHODS: To gain insights into the potential differences between these CGRP pathway therapeutics, we compared the effect of a CGRP ligand antibody (fremanezumab), a CGRP receptor antibody (erenumab) and a CGRP receptor small molecule antagonist (telcagepant) using a combination of binding, functional and imaging assays. RESULTS: Erenumab and telcagepant antagonized CGRP, adrenomedullin and intermedin cAMP signaling at the canonical human CGRP receptor. In contrast, fremanezumab only antagonized CGRP-induced cAMP signaling at the human CGRP receptor. In addition, erenumab, but not fremanezumab, bound and internalized at the canonical human CGRP receptor. Interestingly, erenumab also bound and internalized at the human AMY1 receptor, a CGRP receptor family member. Both erenumab and telcagepant antagonized amylin-induced cAMP signaling at the AMY1 receptor while fremanezumab did not affect amylin responses. CONCLUSION: The therapeutic effect of agents targeting the CGRP ligand versus receptor for migraine prevention (antibodies) or acute treatment (gepants) may involve distinct mechanisms of action. These findings suggest that differing mechanisms could affect efficacy, safety, and/or tolerability in migraine patients.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Péptido Relacionado con Gen de Calcitonina/inmunología , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/prevención & control , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales Humanizados/administración & dosificación , Azepinas/uso terapéutico , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/administración & dosificación , Humanos , Imidazoles/uso terapéutico , Polipéptido Amiloide de los Islotes Pancreáticos , Receptores de Péptido Relacionado con el Gen de Calcitonina
13.
Genomics ; 113(2): 583-594, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33485951

RESUMEN

Investigations on the association between chicken traits and genetic variations can provide basic information to improve production performance in chickens. In our previous work, we genotyped 450 male chickens with a 600 K SNP array [1] and found that several SNPs in the genomic regions of the amylase alpha 1A (AMY1A) gene were significantly associated with feed intake efficiency and carcass traits. Given the lower accuracy of the SNP array, we performed direct sequencing with male and female chickens to further test chicken AMY1A polymorphisms and investigate their association with 17 traits in chickens. The results showed that 7 SNPs in the 5' flanking region, exon, intron and 3' UTR (3' untranslated region) of AMY1A, were significantly associated with daily gain (DG), average daily feed intake (ADFI), leg muscle weight (LMW) and abdominal fat (AF) (p < 0.05). Additionally, the haplotypes based on three SNPs, rs15910189, rs314354067 and rs316026696, showed significant associations with DG (p < 0.01), ADFI and AF (p < 0.05). To better understand the transcriptional regulation of AMY1A, we cloned its 5' flanking region and found that the SNPs rs316436216 and rs314213090 which might change the transcriptional regulator binding sites, were in the suppressor and enhancer regions, respectively. In addition, luciferase assays revealed that the SNP rs314613110 in the 3' UTR influenced the binding of the miRNA gga-miR-1764-3p. To validate whether there is any copy number variation in AMY1A in our population, we performed a genome-wide assessment of CNVs through whole-genome resequencing data. However, no CNV was found in AMY1A in our population, which is different from the increased copy number of AMY1A found in humans who consume a high-starch diet. Therefore, the present study provides substantial evidence for the association of AMY1A polymorphisms with growth traits and feed intake efficiency, which might contribute to chicken breeding programs.


Asunto(s)
Proteínas Aviares/genética , Peso Corporal , Pollos/genética , Ingestión de Alimentos , Polimorfismo de Nucleótido Simple , alfa-Amilasas Salivales/genética , Animales , Pollos/crecimiento & desarrollo , Regiones Promotoras Genéticas
14.
Obes Rev ; 22(6): e13205, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33432778

RESUMEN

The rising incidence of obesity and type 2 diabetes is contributing to the escalating burden of disease globally. These metabolic disorders are closely linked with diet and in particular with carbohydrate consumption; hence, it is important to understand the underlying mechanisms that influence carbohydrate metabolism. Amylase, the enzyme responsible for the digestion of starch, is coded by the genes AMY1A, AMY1B, and AMY1C (salivary amylase) and AMY2A and AMY2B (pancreatic amylase). Previous studies demonstrate wide variations in AMY1A copy numbers, which can be attributed to several genetic, nutritional, and geographical diversities seen in populations globally. Current literature suggests that AMY1A copy number variations are important in obesity and other cardiometabolic disorders through their effects on glucose and lipid homeostasis, inflammatory markers, and the gut microbiome. This review synthesizes the available evidence to improve understanding of the role of AMY1A in obesity and related cardiometabolic risk factors and disorders including insulin resistance and type 2 diabetes, cardiovascular risk and inflammation, and the gut microbiome.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , alfa-Amilasas Salivales , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Variaciones en el Número de Copia de ADN , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Humanos , Obesidad/epidemiología , Obesidad/genética , alfa-Amilasas Pancreáticas/genética , Factores de Riesgo , alfa-Amilasas Salivales/genética
15.
Front Pharmacol ; 11: 1240, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973499

RESUMEN

The "gepants" are a class of calcitonin gene-related peptide (CGRP) receptor antagonist molecules that have been developed for the prevention and treatment of migraine. Rimegepant is reported to act at the CGRP receptor, has good oral bioavailability, and has had positive clinical trial results. However, there is very little data available describing its receptor pharmacology. Importantly, rimegepant activity at the AMY1 receptor, a second potent CGRP receptor that is known to be expressed in the trigeminovascular system, has not been reported. The ability of rimegepant to antagonize activation of human CGRP, AMY1, and related adrenomedullin receptors was determined in transfected in Cos7 cells. Rimegepant was an effective antagonist at both the CGRP and AMY1 receptor. The antagonism of both CGRP and AMY1 receptors may have implications for our understanding of the mechanism of action of rimegepant in the treatment of migraine.

16.
Indian J Pathol Microbiol ; 63(3): 405-411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32769329

RESUMEN

OBJECTIVE: Renal oncocytoma (RO) and chromophobe renal cell carcinoma (ChRCC) originate from the same cell origin, that is, the intercalated cells of the collecting duct.[1] In most cases, there are clear morphologic differences between RO and ChRCC; however, in some instances, overlapping features may be encountered and the differentiation between the two entities becomes difficult.[2] Several immunohistochemical markers with different expression patterns in ChRCC and RO have been described to rule out this dilemma. MATERIALS AND METHODS: About 47 primary renal neoplasms that had been diagnosed as RO or ChRCC were submitted for immunohistochemical staining of amylase α-1A (AMY1A), MOC 31, and CD 82. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy have been analyzed. RESULTS: AMY1A positivity was observed in all RO cases in our work with 91.7% sensitivity and 100% specificity in the diagnosis of RO. The PPV of its expression was (100%) and NPV (97.2%) with a diagnostic accuracy of 97.9%. A significant high expression of MOC 31 was observed in ChRCC compared to its expression in RO with a statistical significance (P < 0.001). In addition, we obtained 82.9% sensitivity and 91.7% specificity of MOC 31 expression in the diagnosis of ChRCC. The positive predictive value (PPV) was (96.7%), negative predictive value (NPV) (64.7%) with diagnostic accuracy (85.1%). In our studied cases, we detected positive immunoexpression of CD 82 in 10 cases (83.3%) of ChRCC. However, it was lost in all RO cases (100%). CD 82 sensitivity and specificity in differentiating ChRCC from RO were 100% and 83.3%, respectively. CONCLUSION: We propose MOC 31 and CD 82 as negative immunostains for RO, as these markers are commonly expressed in ChRCC. In conjunction with AMY1A strong immunopositivity in RO cases, we provide a triple panel of biomarkers (AMY1A, MOC 31, and CD 82) for the distinction between RO and ChRCC.


Asunto(s)
Adenoma Oxifílico/diagnóstico , Carcinoma de Células Renales/diagnóstico , Proteína Kangai-1/genética , Neoplasias Renales/diagnóstico , Glicoproteínas de Membrana/genética , alfa-Amilasas Salivales/genética , Adenoma Oxifílico/genética , Adulto , Anciano , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Diagnóstico Diferencial , Femenino , Humanos , Inmunohistoquímica , Neoplasias Renales/genética , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Diabetes Metab Syndr Obes ; 13: 1695-1701, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32547131

RESUMEN

BACKGROUND: We have recently shown that the copy number of salivary amylase (AMY1) gene was significantly decreased, and the obesity-related salivary biomarkers resistin, MCP-1, TNF-α, IL-6, and CRP were significantly increased in overweight/obese children compared to normal weight. This study aimed to evaluate the association of AMY1 copy number variant (CNV) with obesity and inflammatory markers. Seventy-six participants aged between 6 and 10 years have participated, and the saliva samples were collected along with the anthropometric measurements. METHODS: AMY1 copy number was analyzed by 3D digital PCR, and obesity-related biomarkers were performed with a Bioplex multiplex analyzer. RESULTS: The mean AMY1 copy number was higher in normal weight (7.90 ± 0.38) compared to the overweight/obese group (6.20 ± 0.29). The association of AMY1 CNV with obesity and inflammatory markers showed significant negative correlation [CRP, ß = -0.238 (p < 0.05); resistin, ß = -0.25 (p < 0.05); MCP-1, ß = -0.304 (p < 0.01)] except for complement factor D, TNF α and IL-6. The anti-inflammatory cytokine, IL-10 reported a positive correlation with AMY1 copy number with a ß = 0.268 (p < 0.05). The multivariable model adjusted with age and gender depicted a similar correlation with obesity markers. CONCLUSION: Our results report that AMY1 CNV is associated with obesity and inflammatory biomarkers in children's saliva sample.

18.
Clin Chem ; 66(5): 718-726, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32337541

RESUMEN

BACKGROUND: Copy number variation (CNV) in the salivary amylase gene (AMY1) modulates salivary α-amylase levels and is associated with postprandial glycemic traits. Whether AMY1-CNV plays a role in age-mediated change in insulin resistance (IR) is uncertain. METHODS: We measured AMY1-CNV using duplex quantitative real-time polymerase chain reaction in two studies, the Boston Puerto Rican Health Study (BPRHS, n = 749) and the Genetics of Lipid-Lowering Drug and Diet Network study (GOLDN, n = 980), and plasma metabolomic profiles in the BPRHS. We examined the interaction between AMY1-CNV and age by assessing the relationship between age with glycemic traits and type 2 diabetes (T2D) according to high or low copy numbers of the AMY1 gene. Furthermore, we investigated associations between metabolites and interacting effects of AMY1-CNV and age on T2D risk. RESULTS: We found positive associations of IR with age among subjects with low AMY1-copy-numbers in both studies. T2D was marginally correlated with age in participants with low AMY1-copy-numbers but not with high AMY1-copy-numbers in the BPRHS. Metabolic pathway enrichment analysis identified the pentose metabolic pathway based on metabolites that were associated with both IR and the interactions between AMY1-CNV and age. Moreover, in older participants, high AMY1-copy-numbers tended to be associated with lower levels of ribonic acid, erythronic acid, and arabinonic acid, all of which were positively associated with IR. CONCLUSIONS: We found evidence supporting a role of AMY1-CNV in modifying the relationship between age and IR. Individuals with low AMY1-copy-numbers tend to have increased IR with advancing age.


Asunto(s)
Variaciones en el Número de Copia de ADN , Diabetes Mellitus Tipo 2/etiología , Resistencia a la Insulina/genética , alfa-Amilasas Salivales/genética , Factores de Edad , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo
19.
Nutrients ; 11(6)2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31248128

RESUMEN

Salivary amylase (AMY1) is the most abundant enzyme in human saliva, responsible for the hydrolysis of α-1,4 glycosidic linkages that aids in the digestion of starch. Recently studies have shown that the copy number of AMY1 is associated with obesity; however, the data varies with location. One-third of children are overweight/obese in Alabama. In this study, we aim to determine the relationship between the copy number of AMY1 gene and obesity measurements in children from Alabama. One hundred twenty-seven children aged between 6 to 10 years participated in this study. Anthropometric measurements were measured using WHO recommendations. Genomic DNA was extracted from saliva, and the copy number of the AMY1 gene was estimated by digital PCR. The association between AMY1 copy number and obesity measurements was analyzed by linear regression. The mean AMY1 copy number significantly decreased in overweight/obese (6.21 ± 1.48) compared to normal weight (7.97 ± 2.35) children. AMY1 copy number inversely associated with the obesity measurements. African Americans had a stronger association between low AMY1 copy number and obesity compared to white/European Americans. Our findings suggest that overweight/obese children have a low AMY1 copy number and the effect is more prominent in African Americans.


Asunto(s)
Variaciones en el Número de Copia de ADN , Dosificación de Gen , Obesidad Infantil/genética , Saliva/enzimología , alfa-Amilasas Salivales/genética , Alabama/epidemiología , Estudios de Casos y Controles , Niño , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Obesidad Infantil/diagnóstico , Obesidad Infantil/enzimología , Obesidad Infantil/epidemiología , Fenotipo , Factores de Riesgo
20.
Cell Host Microbe ; 25(4): 553-564.e7, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974084

RESUMEN

Host genetic variation influences microbiome composition. While studies have focused on associations between the gut microbiome and specific alleles, gene copy number (CN) also varies. We relate microbiome diversity to CN variation of the AMY1 locus, which encodes salivary amylase, facilitating starch digestion. After imputing AMY1-CN for ∼1,000 subjects, we identified taxa differentiating fecal microbiomes of high and low AMY1-CN hosts. In a month-long diet intervention study, we show that diet standardization drove gut microbiome convergence, and AMY1-CN correlated with oral and gut microbiome composition and function. The microbiomes of low-AMY1-CN subjects had enhanced capacity to break down complex carbohydrates. High-AMY1-CN subjects had higher levels of salivary Porphyromonas; their gut microbiota had increased abundance of resistant starch-degrading microbes, produced higher levels of short-chain fatty acids, and drove higher adiposity when transferred to germ-free mice. This study establishes AMY1-CN as a genetic factor associated with microbiome composition and function.


Asunto(s)
Amilasas/genética , Tracto Gastrointestinal/microbiología , Dosificación de Gen , Microbiota , Boca/microbiología , Saliva/enzimología , Animales , Vida Libre de Gérmenes , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA