Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273469

RESUMEN

Most chemotherapeutic agents are poorly soluble in water, have low selectivity, and cannot reach the tumor in the desired therapeutic concentration. On the other hand, sensitive hydrophilic therapeutics like nucleic acids and proteins suffer from poor bioavailability and cell internalization. To solve this problem, new types of controlled release systems based on nano-sized self-assemblies of cyclodextrins able to control the speed, timing, and location of therapeutic release are being developed. Cyclodextrins are macrocyclic oligosaccharides characterized by a high synthetic plasticity and potential for derivatization. Introduction of new hydrophobic and/or hydrophilic domains and/or formation of nano-assemblies with therapeutic load extends the use of CDs beyond the tried-and-tested CD-drug host-guest inclusion complexes. The recent advances in nano drug delivery have indicated the benefits of the hybrid amphiphilic CD nanosystems over individual CD and polymer components. This review provides a comprehensive overview of the most recent advances in the design of CDs self-assemblies and their use for delivery of a wide range of therapeutic molecules. It aims to offer a valuable insight into the many roles of CDs within this class of drug nanocarriers as well as current challenges and future perspectives.


Asunto(s)
Ciclodextrinas , Portadores de Fármacos , Polímeros , Ciclodextrinas/química , Humanos , Polímeros/química , Portadores de Fármacos/química , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Animales
2.
Molecules ; 28(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37049785

RESUMEN

Idebenone (IDE), a synthetic short-chain analogue of coenzyme Q10, is a potent antioxidant able to prevent lipid peroxidation and stimulate nerve growth factor. Due to these properties, IDE could potentially be active towards cerebral disorders, but its poor water solubility limits its clinical application. Octanoyl-ß-cyclodextrin is an amphiphilic cyclodextrin (ACyD8) bearing, on average, ten octanoyl substituents able to self-assemble in aqueous solutions, forming various typologies of supramolecular nanoassemblies. Here, we developed nanoparticles based on ACyD8 (ACyD8-NPs) for the potential intranasal administration of IDE to treat neurological disorders, such as Alzheimer's Disease. Nanoparticles were prepared using the nanoprecipitation method and were characterized for their size, zeta potential and morphology. STEM images showed spherical particles, with smooth surfaces and sizes of about 100 nm, suitable for the proposed therapeutical aim. The ACyD8-NPs effectively loaded IDE, showing a high encapsulation efficiency and drug loading percentage. To evaluate the host/guest interaction, UV-vis titration, mono- and two-dimensional NMR analyses, and molecular modeling studies were performed. IDE showed a high affinity for the ACyD8 cavity, forming a 1:1 inclusion complex with a high association constant. A biphasic and sustained release of IDE was observed from the ACyD8-NPs, and, after a burst effect of about 40%, the release was prolonged over 10 days. In vitro studies confirmed the lack of toxicity of the IDE/ACyD8-NPs on neuronal SH-SY5Y cells, and they demonstrated their antioxidant effect upon H2O2 exposure, as a general source of ROS.


Asunto(s)
Ciclodextrinas , Nanopartículas , Neuroblastoma , Humanos , Ciclodextrinas/farmacología , Peróxido de Hidrógeno , Antioxidantes/farmacología , Portadores de Fármacos , Tamaño de la Partícula
3.
ACS Biomater Sci Eng ; 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36562386

RESUMEN

Cyclodextrins are a group of naturally occurring oligosaccharides that have widely been studied and applied in pharmaceutical formulations forming inclusion complexes with a broad variety of drugs exhibiting different hydrophilicity as well as molecular weights. Grafting aliphatic chains onto native cyclodextrins renders them amphiphilic and enables self-assembly into supramolecular structures that have already been explored for drug delivery. Based on the possibility of controlling the inherent physicochemical properties by modifying their chemical structure, amphiphilic cyclodextrin conjugates hold a great potential to become a drug delivery platform adaptable to the individual needs of specific active drug molecules. In this work, a library of amphiphilic cyclodextrin derivatives was synthesized by conjugating aliphatic chains of different lengths to native ß-cyclodextrin via thioether or ester bonds. Upon nanoprecipitation, the synthesized amphiphilic cyclodextrin derivatives spontaneously self-assembled into nanosized supramolecular structures with a monodisperse size distribution. We systematically investigated the relationship between the molecular structure of the amphiphilic cyclodextrin derivatives and the corresponding self-assembly into nanosystems as well as the encapsulation of model drugs with different physicochemical properties. Encapsulation efficiencies up to 97% and pH-dependent release profiles were achieved. We found that both the aliphatic chain length and the linker molecule determine the respective self-assembly and drug encapsulation mechanism of the individual system. The colloidal stability and biocompatibility with human cells of all derivatives were proven. Consequently, amphiphilic cyclodextrin conjugates provide a drug delivery platform with tailor-made control over physicochemical properties and high drug encapsulation efficiency for a broad range of drug molecules, thus offering great potential for the development of future therapeutics with improved therapeutic efficiency.

4.
J Colloid Interface Sci ; 613: 814-826, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35074707

RESUMEN

Recognition and capture of amyloid beta (Aß) is a challenging task for the early diagnosis of neurodegenerative disorders, such as Alzheimer's disease. Here, we report a novel KLVFF-modified nanomagnet based on magnetic nanoparticles (MNP) covered with a non-ionic amphiphilic ß-cyclodextrin (SC16OH) and decorated with KLVFF oligopeptide for the self-recognition of the homologous amino-acids sequence of Aß to collect Aß (1-42) peptide from aqueous samples. MNP@SC16OH and MNP@SC16OH/Ada-Pep nanoassemblies were fully characterized by complementary techniques both as solid powders and in aqueous dispersions. Single domain MNP@SC16OH/Ada-Pep nanomagnets of 20-40 nm were observed by TEM analysis. DLS and ζ-potential measurements revealed that MNP@SC16OH nanoassemblies owned in aqueous dispersion a hydrodynamic radius of about 150 nm, which was unaffected by Ada-Pep decoration, while the negative ζ-potential of MNP@SC16OH (-40 mV) became less negative (-30 mV) in MNP@SC16OH/Ada-Pep, confirming the exposition of positively charged KLVFF on nanomagnets surface. The ability of MNP@SC16OH/Ada-Pep to recruit Aß (1-42) in aqueous solution was evaluated by MALDI-TOF and compared with the ineffectiveness of undecorated MNP@SC16OH and VFLKF scrambled peptide-decorated nanoassemblies (MNP@SC16OH/Ada-scPep), pointing out the selectivity of KLVFF-decorated nanohybrid towards Aß (1-42). Finally, the property of nanomagnets to extract Aß in conditioned medium of cells over-producing Aß peptides was investigated as proof of concept of effectiveness of these nanomaterials as potential diagnostic tools.


Asunto(s)
Péptidos beta-Amiloides , Ciclodextrinas , Oligopéptidos , Fragmentos de Péptidos
5.
J Pharm Sci ; 110(1): 292-300, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152374

RESUMEN

New therapeutic approaches have been developed during recent years for the management of diabetic patients, with glucagon-like peptides analogues (GLP-1 analogues) emerging as one of the most useful therapies. However, as with human insulin analogues, translation of GLP-1 analogues into oral pharmaceutical products has been limited due to reduced oral bioavailability. Nanoparticle (NP) formulations have been investigated due to their potential to protect the drug cargo and enhance bioavailability. This study describes the pre-clinical development of a cyclodextrin-based NP formulation containing the GLP-1 analogue liraglutide for intestinal administration. A cationic amphiphilic cyclodextrin (click propyl-amine cyclodextrin (CD)) was selected as the primary complexing agent for the peptide. The resulting NPs presented an average size of 101 ± 8 nm, low polydispersity index (0.240), a negative zeta potential (-35 ± 7 mV), complete association efficiency and peptide loading of 5.0%. The optimized prototype exhibited colloidal stability in intestinal-biorelevant media up to 4 h, protecting the entrapped liraglutide from degradation by proteolytic enzymes. Intestinal administration in rats revealed effective protection and delivery of liraglutide, with a similar pharmacological response in blood glucose levels relative to subcutaneous administration of free solution. These results demonstrate the potential of the CD based formulation for further development.


Asunto(s)
Ciclodextrinas , Nanopartículas , Animales , Humanos , Hipoglucemiantes , Liraglutida , Péptidos , Ratas
6.
J Liposome Res ; 30(4): 407-416, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31726887

RESUMEN

In this paper, two medusa-like ACyDs, modified at the primary rim bearing four (ACyD4) and eight carbons (ACyD8) acyl chain length, and one bouquet-like CyD, modified at primary side with thiohexyl and at secondary one with oligoethylene moiety (SC6OH), were investigated for their ability to assemble in nanostructures or to form hybrid dipalmitoylphosphatidylcholine (DPPC)/ACyDs systems. The lipophilicity of these molecules and the different preparation methods used in this study (thin layer evaporation and nanoprecipitation method) significantly affect the aggregation behaviour in aqueous medium. Except for the shortest medusa-like ACyD4, the other ACyDs formed stable nanoaggregates for at least 45 days. The effect of ACyDs on the thermotropic behaviour of DPPC liposomes was also studied by differential scanning calorimetry analysis, thus elucidating their interaction with liposomes to afford hybrid liposome/ACyDs systems. The medusa-like ACyD4 cannot be used to realize nanosystems because it quickly aggregates or it induces a complete destabilization of the liposomes. At the highest concentration investigated (0.01 molar fraction), both ACyD8 and SC6OH interacted with DPPC liposomes, forming ACyD/DPPC or SC6OH/DPPC hybrid vesicular carriers.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Ciclodextrinas/química , Portadores de Fármacos/química , Membrana Dobles de Lípidos/química , Liposomas/química , Nanoestructuras/química , Rastreo Diferencial de Calorimetría , Fenómenos Químicos , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Estructura Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Beilstein J Org Chem ; 12: 73-80, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26877809

RESUMEN

Chemically modified cyclodextrins carrying both hydrophobic and hydrophilic substituents may form supramolecular aggregates or nanostructures of great interest. These systems have been usually investigated and characterized in water for their potential use as nanocarriers for drug delivery, but they can also aggregate in apolar solvents, as shown in the present paper through atomistic molecular dynamics simulations and dynamic light scattering measurements. The simulations, carried out with a large number of molecules in vacuo adopting an unbiased bottom-up approach, suggest the formation of bidimensional structures with characteristic length scales of the order of 10 nm, although some of these sizes are possibly affected by the assumed periodicity of the simulation cell, in particular at longer lengths. In any case, these nanostructures are stable at least from the kinetic viewpoint for relatively long times thanks to the large number of intermolecular interactions of dipolar and dispersive nature. The dynamic light scattering experiments indicate the presence of aggregates with a hydrodynamic radius of the order of 80 nm and a relatively modest polydispersity, even though smaller nanometer-sized aggregates cannot be fully ruled out. Taken together, these simulation and experimental results indicate that amphiphilically modified cyclodextrins do also form large-scale nanoaggregates even in apolar solvents.

8.
Beilstein J Org Chem ; 11: 2459-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26734094

RESUMEN

Amphiphilically modified cyclodextrins may form various supramolecular aggregates. Here we report a theoretical study of the aggregation of a few amphiphilic cyclodextrins carrying hydrophobic thioalkyl groups and hydrophilic ethylene glycol moieties at opposite rims, focusing on the initial nucleation stage in an apolar solvent and in water. The study is based on atomistic molecular dynamics methods with a "bottom up" approach that can provide important information about the initial aggregates of few molecules. The focus is on the interaction pattern of amphiphilic cyclodextrin (aCD), which may interact by mutual inclusion of the substituent groups in the hydrophobic cavity of neighbouring molecules or by dispersion interactions at their lateral surface. We suggest that these aggregates can also form the nucleation stage of larger systems as well as the building blocks of micelles, vesicle, membranes, or generally nanoparticles thus opening new perspectives in the design of aggregates correlating their structures with the pharmaceutical properties.

9.
Nanomedicine (Lond) ; 9(6): 877-94, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24981652

RESUMEN

Cyclodextrins (CDs) have brought a revolution in the pharmaceutical field over the last decade. Natural and modified CDs (α-CD and ß-CD) have been studied and some have gained US FDA approval or achieved 'Generally Regarded as Safe' (GRAS) status. Another characteristic of CDs is the ease with which they can be induced to form supramolecular structures for its use in drug delivery. CDs, grafted or crosslinked with polymers, are now being developed into 'smart' systems for efficient targeted drug delivery, especially for hydrophobic drugs. Amphiphilic CDs have the ability to form nanospheres or nanocapsules via a simple nanoprecipitation technique. This review deals with different types of CDs, and their efficacy, physicochemical properties and transformation into nanoparticles with interesting in vitro and in vivo applications.


Asunto(s)
Ciclodextrinas/química , Portadores de Fármacos/química , Nanopartículas/química , Preparaciones Farmacéuticas/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Ciclodextrinas/metabolismo , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Técnicas de Transferencia de Gen , Humanos , Nanopartículas/metabolismo , Nanopartículas/ultraestructura , Neoplasias/tratamiento farmacológico , Ácidos Nucleicos/administración & dosificación , Polímeros/química , Polímeros/metabolismo
10.
Nanomaterials (Basel) ; 4(3): 741-765, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-28344245

RESUMEN

A variety of cyclodextrin-based molecular structures, with substitutions of either primary or secondary faces of the natural oligosaccharide macrocycles of α-, ß-, or γ-cyclodextrins, have been designed towards innovative applications of self-assembled cyclodextrin nanomaterials. Amphiphilic cyclodextrins have been obtained by chemical or enzymatic modifications of their macrocycles using phospholipidyl, peptidolipidyl, cholesteryl, and oligo(ethylene oxide) anchors as well as variable numbers of grafted hydrophobic hydrocarbon or fluorinated chains. These novel compounds may self-assemble in an aqueous medium into different types of supramolecular nanoassemblies (vesicles, micelles, nanorods, nanospheres, and other kinds of nanoparticles and liquid crystalline structures). This review discusses the supramolecular nanoarchitectures, which can be formed by amphiphilic cyclodextrin derivatives in mixtures with other molecules (phospholipids, surfactants, and olygonucleotides). Biomedical applications are foreseen for nanoencapsulation of drug molecules in the hydrophobic interchain volumes and nanocavities of the amphiphilic cyclodextrins (serving as drug carriers or pharmaceutical excipients), anticancer phototherapy, gene delivery, as well as for protection of instable active ingredients through inclusion complexation in nanostructured media.

11.
Beilstein J Org Chem ; 10: 2654-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25550727

RESUMEN

This work reports the synthesis of a new family of mono-substituted amphiphilic cyclodextrins using a green methodology. Reactions using greener and safer catalysts with more environmentally friendly purification solvents were performed. Four unreported mono-substituted cyclodextrins bearing a phytosphingolipidyl chain and a fatty acid chain (C10, C12, C14 and C18) were successfully obtained with a promising yield.

12.
Beilstein J Org Chem ; 10: 2743-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25550739

RESUMEN

Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.

13.
Eur J Pharm Biopharm ; 85(3 Pt A): 390-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23811437

RESUMEN

AIM: Development and evaluation of a new targeted gene delivery system by first preforming self-assembled nanocomplexes from a polycationic amphiphilic cyclodextrin (paCD) and pDNA and then decorating the surface of the nanoparticles with folic acid (FA). EXPERIMENTAL SECTION: The cyclodextrin derivative (T2) is a tetradecacationic structure incorporating 14 primary amino groups and 7 thioureido groups at the primary face of a cyclomaltoheptaose (ß-CD) core and 14 hexanoyl chains at the secondary face. RESULTS AND CONCLUSIONS: T2 complexed and protected pDNA (luciferase-encoding plasmid DNA, pCMVLuc) and efficiently mediated transfection in vitro and in vivo with no associated toxicity. The combination of folic acid with CDplexes afforded ternary nanocomplexes (Fol-CDplexes) that enhanced significantly the transfection activity of pCMVLuc in human cervix adenocarcinoma HeLa cells, especially when formulated with 1 µg FA/µg DNA. The observed transfection enhancement was associated to specific folate receptor (FR)-mediated internalization of Fol-CDplexes, as corroborated by employing a receptor-deficient cell line (HepG2) and an excess of free folic acid. The in vivo studies, including luciferase reporter gene expression and biodistribution, indicated that 24h after intravenous administration of the T2-pDNA nanocomplexes, transfection takes part mainly in the liver and partially in the lung. Interestingly, the corresponding Fol-CDplexes lead to an increase in the transfection activity in the lung and the liver compared to non-targeted CDplexes. Folate-CDplexes developed in this study have improved transfection efficiency and although various methods have been used for the preparation of ligand-DNA-complexes, covalent binding is usually needed and insoluble aggregates are formed unless the concentration of the components is minimized. However, the complexes developed by first time in this work were prepared by simple mixing. The synthetic nature of this formulation provides the potential of flexibility in terms of composition and the capability of inexpensive and large-scale production of the complexes. These nanovectors may be an adequate alternative to viral vectors for gene therapy in the future.


Asunto(s)
ADN/administración & dosificación , Ácido Fólico/química , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Ciclodextrinas/química , Femenino , Receptores de Folato Anclados a GPI/metabolismo , Genes Reporteros/genética , Células HeLa , Células Hep G2 , Humanos , Hígado/metabolismo , Luciferasas/genética , Pulmón/metabolismo , Nanopartículas , Plásmidos , Poliaminas/química , Polielectrolitos , Distribución Tisular , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA