Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(16)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39204552

RESUMEN

In a miscible crystalline/crystalline blend of poly(trimethylene terephthalate) (PTT) and poly(ethylene terephthalate) (PET), the PET spherulites grew at 240 °C when the PTT content was 30 wt% or less. The growth rate of PET spherulites decreased with time due to the exclusion of PTT from the growth front of PET spherulites into the amorphous region, resulting in a three-stage crystallization process. Due to the exclusion, the spherulite growth stopped before the volume filling of the PET spherulites, causing the formation of an excluded PTT amorphous region. When the temperature was lowered from 240 °C to 210 °C, the PTT spherulites grew in the excluded PTT amorphous region. The spherulite growth rate of PTT in the excluded PTT amorphous region was equivalent to that of a blend of 60-70 wt% PTT in 30/70 PTT/PET. These results suggest a significant change in the PTT concentration in the amorphous region, from the initial PTT content of 30 wt% to 60-70 wt%, due to the exclusion of PTT during the melt crystallization of PET at 240 °C.

2.
Carbohydr Polym ; 337: 122088, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710544

RESUMEN

The construction of the preferred orientation structure by stretching is an efficient strategy to fabricate high-performance cellulose film and it is still an open issue whether crystalline structure or amorphous molecular chain is the key factor in determining the enhanced mechanical performance. Herein, uniaxial stretching with constant width followed by drying in a stretching state was carried out to cellulose hydrogels with physical and chemical double cross-linking networks, achieving high-performance regenerated cellulose films (RCFs) with an impressive tensile strength of 154.5 MPa and an elastic modulus of 5.4 GPa. The hierarchical structure of RCFs during uniaxial stretching and drying was systematically characterized from micro- to nanoscale, including microscopic morphology, crystalline structure as well as relaxation behavior at a molecular level. The two-dimensional correlation spectra of dynamic mechanical analysis and Havriliak-Negami fitting results verified that the enhanced mechanical properties of RCFs were mainly attributed to the stretch-induced tight packing and restricted relaxation of amorphous molecular chains. The new insight concerning the contribution of molecular chains in the amorphous region to the enhancement of mechanical performance for RCFs is expected to provide valuable guidance for designing and fabricating high-performance eco-friendly cellulose-based films.

3.
Polymers (Basel) ; 11(5)2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086056

RESUMEN

Modified nano-TiO2 was prepared by using triethanolamine and tetraisopropyl di (dioctylphosphate) titanate, respectively. Then the poly(p-phenylene benzobisoxazole) (PBO) fibers doped with different additions of modified nano-TiO2 particles were prepared by preparing PBO polymer solution and dry-jet wet spinning technique. Thermogravimetric and derivative thermogravimetry results showed that the addition of nano-TiO2 could improve the crystallinity and maximum thermal decomposition rate temperature of PBO fibers. Tensile strength results showed that nano-TiO2 addition did not affect the tensile properties of PBO fibers before ultraviolet (UV) aging began, and nano-TiO2 with addition values lower than 3% could improve the UV aging resistance performance of PBO fibers, while the aging resistance would be seriously reduced if values were over 5%. The size and quantity of the amorphous regions have a more important influence on the aging resistance of PBO fibers.

4.
Polymers (Basel) ; 11(5)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067699

RESUMEN

This study investigates the properties of a polymer-gas mixture formed through diffusion, based on the changes in the partial pressure and observed changes in the impact and tensile strengths owing to the gas dissolution. The high-pressure gas dissolves into a solid-state polymer through diffusion based on the difference in the partial pressure. This dissolved gas is present in the amorphous region within the polymeric material temporarily, which results in the polymer exhibiting different mechanical properties, while the gas remains dissolved in the polymer. In this study, the mechanical properties of amorphous polyethylene terephthalate (APET) specimens prepared by dissolving CO2 using a high-pressure vessel were investigated, and the resulting impact and tensile strengths were measured. These experiments showed that the increase in sorption rate of CO2 caused an increase in the impact strength. At 2.9% CO2 absorption, the impact strength of APET increased 956% compared to that of the reference specimen. Furthermore, the tensile strength decreased by up to 71.7% at 5.48% CO2 sorption; the stress-strain curves varied with the gas sorption rate. This phenomenon can be associated with the change in the volume caused by CO2 dissolution. When the APET absorbed more than 2.0% CO2 gas, sample volume increased. A decrease in the network density can occur when the volume is increased while maintaining constant mass. The CO2 gas in the polymer acted as a cushion in impact tests which have sorption rates above 2%. In addition to the reduction in the network density in the polymer chain, Van Der Waals forces are decreased causing a decrease in tensile strength only while CO2 is present in the APET. These observations only occur prior to CO2 desorption from the polymer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA