Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273221

RESUMEN

Aluminum (Al) toxicity and low phosphorus availability (LP) are the top two co-existing edaphic constraints limiting agriculture productivity in acid soils. Plants have evolved versatile mechanisms to cope with the two stresses alone or simultaneously. However, the specific and common molecular mechanisms, especially those involving flavonoids and carbohydrate metabolism, remain unclear. Laboratory studies were conducted on two wheat genotypes-Fielder (Al-tolerant and P-efficient) and Ardito (Al-sensitive and P-inefficient)-exposed to 50 µM Al and 2 µM Pi (LP) in hydroponic solutions. After 4 days of stress, wheat roots were analyzed using transcriptomics and targeted metabolomics techniques. In Fielder, a total of 2296 differentially expressed genes (DEGs) were identified under Al stress, with 1535 upregulated and 761 downregulated, and 3029 DEGs were identified under LP stress, with 1591 upregulated and 1438 downregulated. Similarly, 4404 DEGs were identified in Ardito under Al stress, with 3191 upregulated and 1213 downregulated, and 1430 DEGs were identified under LP stress, with 1176 upregulated and 254 downregulated. GO annotation analysis results showed that 4079 DEGs were annotated to the metabolic processes term. These DEGs were significantly enriched in the phenylpropanoid, flavonoid, flavone and flavonol biosynthesis, and carbohydrate metabolism pathways by performing the KEGG enrichment analysis. The targeted metabolome analysis detected 19 flavonoids and 15 carbohydrate components in Fielder and Ardito under Al and LP stresses. In Fielder, more responsive genes and metabolites were involved in flavonoid metabolism under LP than Al stress, whereas the opposite trend was observed in Ardito. In the carbohydrate metabolism pathway, the gene and metabolite expression levels were higher in Fielder than in Ardito. The combined transcriptome and metabolome analysis revealed differences in flavonoid- and carbohydrate-related genes and metabolites between Fielder and Ardito under Al and LP stresses, which may contribute to Fielder's higher resistance to Al and LP. The results of this study lay a foundation for pyramiding genes and breeding multi-resistant varieties.


Asunto(s)
Aluminio , Regulación de la Expresión Génica de las Plantas , Metabolómica , Fósforo , Transcriptoma , Triticum , Triticum/metabolismo , Triticum/genética , Aluminio/toxicidad , Fósforo/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolómica/métodos , Estrés Fisiológico/genética , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Metaboloma
2.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612522

RESUMEN

The multidrug and toxic compound extrusion (MATE) proteins are coding by a secondary transporter gene family, and have been identified to participate in the modulation of organic acid exudation for aluminum (Al) resistance. The soybean variety Glycine max "Tamba" (TBS) exhibits high Al tolerance. The expression patterns of MATE genes in response to Al stress in TBS and their specific functions in the context of Al stress remain elusive. In this study, 124 MATE genes were identified from the soybean genome. The RNA-Seq results revealed significant upregulation of GmMATE13 and GmMATE75 in TBS upon exposure to high-dose Al3+ treatment and both genes demonstrated sequence homology to citrate transporters of other plants. Subcellular localization showed that both proteins were located in the cell membrane. Transgenic complementation experiments of Arabidopsis mutants, atmate, with GmMATE13 or GmMATE75 genes enhanced the Al tolerance of the plant due to citrate secretion. Taken together, this study identified GmMATE13 and GmMATE75 as citrate transporter genes in TBS, which could improve citrate secretion and enhance Al tolerance. Our findings provide genetic resources for the development of plant varieties that are resistant to Al toxicity.


Asunto(s)
Aluminio , Arabidopsis , Aluminio/toxicidad , Glycine max/genética , Arabidopsis/genética , Membrana Celular , Citratos
3.
Plant Direct ; 8(1): e557, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38161730

RESUMEN

Proton (H+) release is linked to aluminum (Al)-enhanced organic acids (OAs) excretion from the roots under Al rhizotoxicity in plants. It is well-reported that the Al-enhanced organic acid excretion mechanism is regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1), a zinc-finger TF that regulates major Al tolerance genes. However, the mechanism of H+ release linked to OAs excretion under Al stress has not been fully elucidated. Recent physiological and molecular-genetic studies have implicated the involvement of SMALL AUXIN UP RNAs (SAURs) in the activation of plasma membrane H+-ATPases for stress responses in plants. We hypothesized that STOP1 is involved in the regulation of Al-responsive SAURs, which may contribute to the co-secretion of protons and malate under Al stress conditions. In our transcriptome analysis of the roots of the stop1 (sensitive to proton rhizotoxicity1) mutant, we found that STOP1 regulates the transcription of one of the SAURs, namely SAUR55. Furthermore, we observed that the expression of SAUR55 was induced by Al and repressed in the STOP1 T-DNA insertion knockout (KO) mutant (STOP1-KO). Through in silico analysis, we identified a functional STOP1-binding site in the promoter of SAUR55. Subsequent in vitro and in vivo studies confirmed that STOP1 directly binds to the promoter of SAUR55. This suggests that STOP1 directly regulates the expression of SAUR55 under Al stress. We next examined proton release in the rhizosphere and malate excretion in the T-DNA insertion KO mutant of SAUR55 (saur55), in conjunction with STOP1-KO. Both saur55 and STOP1-KO suppressed rhizosphere acidification and malate release under Al stress. Additionally, the root growth of saur55 was sensitive to Al-containing media. In contrast, the overexpressed line of SAUR55 enhanced rhizosphere acidification and malate release, leading to increased Al tolerance. These associations with Al tolerance were also observed in natural variations of Arabidopsis. These findings demonstrate that transcriptional regulation of SAUR55 by STOP1 positively regulates H+ excretion via PM H+-ATPase 2 which enhances Al tolerance by malate secretion from the roots of Arabidopsis. The activation of PM H+-ATPase 2 by SAUR55 was suggested to be due to PP2C.D2/D5 inhibition by interaction on the plasma membrane with its phosphatase. Furthermore, RNAi-suppression of NtSTOP1 in tobacco shows suppression of rhizosphere acidification under Al stress, which was associated with the suppression of SAUR55 orthologs, which are inducible by Al in tobacco. It suggests that transcriptional regulation of Al-inducible SAURs by STOP1 plays a critical role in OAs excretion in several plant species as an Al tolerance mechanism.

4.
Front Microbiol ; 14: 1241244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37700869

RESUMEN

A novel aluminum-tolerant bacterial strain CA42 was isolated from the aquatic plant Eleocharis dulcis, which grows in a highly acidic swamp in Vietnam. Inoculation with CA42 allowed Oryza sativa to grow in the presence of 300 µM AlCl3 at pH 3.5, and biofilms were observed around the roots. Using 16S rRNA gene sequencing analysis, the strain was identified as Pullulanibacillus sp. CA42. This strain secreted large amounts of an extracellular polysaccharide (CA42 EPS). Results from structural analyses on CA42 EPS, namely methylation analysis and nuclear magnetic resonance (NMR), indicated that the chemical structure of CA42 EPS was a glycogen-like α-glucan. Purified CA42 EPS and the commercially available oyster glycogen adsorbed aluminum ions up to 15-30 µmol/g dry weight. Digestion treatments with α-amylase and pullulanase completely attenuated the aluminum ion-adsorbing activity of purified CA42 EPS and oyster glycogen, suggesting that the glycogen-like structure adsorbed aluminum ions and that its branching structure played an important role in its aluminum adsorbing activity. Furthermore, the aluminum tolerance of CA42 cells was attenuated by pullulanase treatment directly on the live CA42 cells. These results suggest that CA42 EPS adsorbs aluminum ions and is involved in the aluminum tolerance mechanism of Pullulanibacillus sp. CA42. Thus, this strain may be a potential plant growth-promoting bacterium in acidic soils. In addition, this study is the first to report a glycogen-like polysaccharide that adsorbs aluminum ions.

5.
J Hazard Mater ; 460: 132274, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37643573

RESUMEN

Aluminum (Al) toxicity is a significant constraint on agricultural productivity worldwide. Melatonin (MT) has been shown to alleviate Al toxicity in plants; however, the underlying mechanisms remain largely unknown. Here, we employed a combination of physiological and molecular biology techniques to examine the role of MT in mitigating Al toxicity of hickory. We found that MT decreased the contents of cell wall pectin, hemicellulose, Al, and Al-induced massive reactive oxygen species accumulation in the roots of hickory. Transcriptomic analysis revealed that MT may alleviate root tip Al stress by regulating Al-responsive and nonresponsive pathways. Co-expression regulatory network and dual-luciferase receptor assays revealed that transcription factors, CcC3H12 and CcAZF2, responded to MT and significantly activated the expression of two cell wall pectin-related genes, CcPME61 and CcGAE6, respectively. Further, yeast one-hybrid and electrophoretic mobility shift assay (EMSA) assays verified that CcC3H12 and CcAZF2 regulated CcPME61 and CcGAE6, respectively, by directly binding to their promoters. Overexpression of CcPME61 enhanced the Al sensitivity of Arabidopsis thaliana. Our results indicate that MT can improve Al tolerance of hickory via multiple pathways, which provides a new perspective for the study of the mechanism of MT in alleviating abiotic stress.


Asunto(s)
Arabidopsis , Melatonina , Melatonina/farmacología , Aluminio/toxicidad , Agricultura , Arabidopsis/genética , Pectinas
6.
Front Plant Sci ; 14: 1142211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384362

RESUMEN

Rusty root syndrome is a common and serious disease in the process of Panax ginseng cultivation. This disease greatly decreases the production and quality of P. ginseng and causes a severe threat to the healthy development of the ginseng industry. However, its pathogenic mechanism remains unclear. In this study, Illumina high-throughput sequencing (RNA-seq) technology was used for comparative transcriptome analysis of healthy and rusty root-affected ginseng. The roots of rusty ginseng showed 672 upregulated genes and 526 downregulated genes compared with the healthy ginseng roots. There were significant differences in the expression of genes involved in the biosynthesis of secondary metabolites, plant hormone signal transduction, and plant-pathogen interaction. Further analysis showed that the cell wall synthesis and modification of ginseng has a strong response to rusty root syndrome. Furthermore, the rusty ginseng increased aluminum tolerance by inhibiting Al entering cells through external chelating Al and cell wall-binding Al. The present study establishes a molecular model of the ginseng response to rusty roots. Our findings provide new insights into the occurrence of rusty root syndrome, which will reveal the underlying molecular mechanisms of ginseng response to this disease.

7.
Plants (Basel) ; 12(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37375958

RESUMEN

It is well known that plant-growth-promoting rhizobacteria (PGPRs) increase the tolerance of plants to abiotic stresses; however, the counteraction of Al toxicity has received little attention. The effects of specially selected Al-tolerant and Al-immobilizing microorganisms were investigated using pea cultivar Sparkle and its Al-sensitive mutant E107 (brz). The strain Cupriavidus sp. D39 was the most-efficient in the growth promotion of hydroponically grown peas treated with 80 µM AlCl3, increasing the plant biomass of Sparkle by 20% and of E107 (brz) by two-times. This strain immobilized Al in the nutrient solution and decreased its concentration in E107 (brz) roots. The mutant showed upregulated exudation of organic acids, amino acids, and sugars in the absence or presence of Al as compared with Sparkle, and in most cases, the Al treatment stimulated exudation. Bacteria utilized root exudates and more actively colonized the root surface of E107 (brz). The exudation of tryptophan and the production of IAA by Cupriavidus sp. D39 in the root zone of the Al-treated mutant were observed. Aluminum disturbed the concentrations of nutrients in plants, but inoculation with Cupriavidus sp. D39 partially restored such negative effects. Thus, the E107 (brz) mutant is a useful tool for studying the mechanisms of plant-microbe interactions, and PGPR plays an important role in protecting plants against Al toxicity.

8.
Planta ; 257(2): 28, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592255

RESUMEN

MAIN CONCLUSION: Inbred line 11-133 of popcorn showed the lowest apoplast Al and total Al concentrations and Al-lumogallion complex, associated with a more efficient antioxidant system, mainly due to glutathione metabolism. Popcorn (Zea mays L. var. everta) is largely intended for human consumption. About 40% of the world's arable soils are acidic. In soils acidic, aluminum (Al) ionizes producing the trivalent cation, which is highly toxic to plants. Hence, this work aimed to: (1) evaluate the Al toxicity sites and its effect on the structure of the root tips, (2) quantify Al concentrations in the apoplast and symplast of the roots, and (3) to elucidate the modulation on the activity of antioxidant enzymes and metabolites of the ascorbate-glutathione cycle in two popcorn inbred lines (ILs) 11-133 and 11-60, classified as tolerant and sensitive to this metal, respectively. Aluminum toxicity did not affect the shoot growth; however, there was a yellowing of the oldest leaf blade only in 11-60. The better performance of 11-133 is related to lower apoplastic and total Al concentrations and Al accumulation in the root associated with a lower fluorescence of Al-lumogallion complex at the root tip, indicating the presence of mechanisms of chelation with this metal. Consequently, this IL showed less change in root morphoanatomy and lower reactive oxygen species and malondialdehyde content, which are associated with a more efficient enzymatic and non-enzymatic system, mainly due to the higher content of the glutathione metabolite and the higher activities of superoxide dismutase, monodehydroascorbate reductase, dehydroascorbate reductase, γ-glutamylcysteine synthetase, and glutathione peroxidase enzymes. Thus, these findings illustrated above indicate how internal mechanisms of detoxification respond to Al in popcorn, which can be used as tolerance biomarkers.


Asunto(s)
Aluminio , Antioxidantes , Humanos , Antioxidantes/metabolismo , Aluminio/toxicidad , Estrés Oxidativo , Catalasa/metabolismo , Ácido Ascórbico/metabolismo , Oxidación-Reducción , Glutatión , Suelo , Raíces de Plantas/metabolismo
9.
Genomics ; 115(1): 110528, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462728

RESUMEN

Functional enrichment analysis is a cornerstone in bioinformatics as it makes possible to identify functional information by using a gene list as source. Different tools are available to compare gene ontology (GO) terms, based on a directed acyclic graph structure or content-based algorithms which are time-consuming and require a priori information of GO terms. Nevertheless, quantitative procedures to compare GO terms among gene lists and species are not available. Here we present a computational procedure, implemented in R, to infer functional information derived from comparative strategies. GOCompare provides a framework for functional comparative genomics starting from comparable lists from GO terms. The program uses functional enrichment analysis (FEA) results and implement graph theory to identify statistically relevant GO terms for both, GO categories and analyzed species. Thus, GOCompare allows finding new functional information complementing current FEA approaches and extending their use to a comparative perspective. To test our approach GO terms were obtained for a list of aluminum tolerance-associated genes in Oryza sativa subsp. japonica and their orthologues in Arabidopsis thaliana. GOCompare was able to detect functional similarities for reactive oxygen species and ion binding capabilities which are common in plants as molecular mechanisms to tolerate aluminum toxicity. Consequently, the R package exhibited a good performance when implemented in complex datasets, allowing to establish hypothesis that might explain a biological process from a functional perspective, and narrowing down the possible landscapes to design wet lab experiments.


Asunto(s)
Aluminio , Arabidopsis , Genómica/métodos , Biología Computacional/métodos , Algoritmos , Ontología de Genes , Arabidopsis/genética
10.
Physiol Mol Biol Plants ; 28(11-12): 2085-2098, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36573146

RESUMEN

In acidic soil, aluminum (Al) ionizes into trivalent cation and becomes highly toxic to plants. Thus, the objectives of this work were (i) to evaluate the Al concentration and identify sites of Al toxicity and its effect on the structure on rice root tips and (ii) to elucidate the adjustments involved in the activities/contents of enzymes/compounds in the roots against Al. For this, two genotypes with contrasting Al tolerance were used. Our results showed that the root length of the tolerant genotype was not affected after Al exposure. We also observed that both the genotypes used strategies to avoid Al uptake, such as the overlap of P and Al in the tolerant genotype and the presence of border cells in the sensitive genotype, which proved inefficient. In the tolerant genotype, other external Al detoxification mechanisms may have contributed to the lower Al concentration in roots and lower fluorescence of the Al-lumogallion complex. Additionally, both genotypes present the activation of key enzymes to decrease oxidative stress, such as CAT, POX, APX, and DHAR, and a more reducing redox environment, mainly due to the increase in the AA/DHA ratio. However, higher total ascorbate, AA, total glutathione, and GSH contents associated with higher SOD, GPX, and GR activities contributed to the reduction of oxidative stress in the tolerant genotype after Al exposure. Furthermore, there was a strong association between the sensitive genotype to Al concentration, O2 •- content, and MDA amount; therefore, these traits can be used as sensitivity indicators in Al studies.

11.
Front Plant Sci ; 13: 970270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172551

RESUMEN

Aluminum (Al) toxicity significantly restricts crop production on acidic soils. Although rice is highly resistant to Al stress, the underlying resistant mechanisms are not fully understood. Here, we characterized the function of OsNIP1;2, a plasma membrane-localized nodulin 26-like intrinsic protein (NIP) in rice. Aluminum stress specifically and quickly induced OsNIP1;2 expression in the root. Functional mutations of OsNIP1;2 in two independent rice lines led to significantly enhanced sensitivity to Al but not other metals. Moreover, the Osnip1;2 mutants had considerably more Al accumulated in the root cell wall but less in the cytosol than the wild-type rice. In addition, compared with the wild-type rice plants, the Osnip1;2 mutants contained more Al in the root but less in the shoot. When expressed in yeast, OsNIP1;2 led to enhanced Al accumulation in the cells and enhanced sensitivity to Al stress, suggesting that OsNIP1;2 facilitated Al uptake in yeast. These results suggest that OsNIP1;2 confers internal Al detoxification via taking out the root cell wall's Al, sequestering it to the root cell's vacuole, and re-distributing it to the above-ground tissues.

12.
Front Plant Sci ; 13: 909045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991422

RESUMEN

Aluminum (Al) toxicity poses a significant challenge for the yield improvement of chickpea, which is an economically important legume crop with high nutritional value in human diets. The genetic basis of Al-tolerance in chickpea remains unclear. Here, we assessed the Al-tolerance of 8 wild Cicer and one cultivated chickpea (PBA Pistol) accessions by measuring the root elongation in solution culture under control (0 µM Al3+) and Al treatments (15, 30 µM Al3+). Compared to PBA Pistol, the wild Cicer accessions displayed both tolerant and sensitive phenotypes, supporting wild Cicer as a potential genetic pool for Al-tolerance improvement. To identify potential genes related to Al-tolerance in chickpea, genome-wide screening of multidrug and toxic compound extrusion (MATE) encoding genes was performed. Fifty-six MATE genes were identified in total, which can be divided into 4 major phylogenetic groups. Four chickpea MATE genes (CaMATE1-4) were clustered with the previously characterized citrate transporters MtMATE66 and MtMATE69 in Medicago truncatula. Transcriptome data showed that CaMATE1-4 have diverse expression profiles, with CaMATE2 being root-specific. qRT-PCR analyses confirmed that CaMATE2 and CaMATE4 were highly expressed in root tips and were up-regulated upon Al treatment in all chickpea lines. Further measurement of carboxylic acids showed that malonic acid, instead of malate or citrate, is the major extruded acid by Cicer spp. root. Protein structural modeling analyses revealed that CaMATE2 has a divergent substrate-binding cavity from Arabidopsis AtFRD3, which may explain the different acid-secretion profile for chickpea. Pangenome survey showed that CaMATE1-4 have much higher genetic diversity in wild Cicer than that in cultivated chickpea. This first identification of CaMATE2 and CaMATE4 responsive to Al3+ treatment in Cicer paves the way for future functional characterization of MATE genes in Cicer spp., and to facilitate future design of gene-specific markers for Al-tolerant line selection in chickpea breeding programs.

13.
Front Plant Sci ; 13: 968499, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968113

RESUMEN

Olive (Olea europaea L.) is an ancient tree species in the Mediterranean, but the lack of knowledge about aluminum-resistant varieties limits its introduction to acidic soil. The objective of this study was to have a comprehensive evaluation of the response to aluminum stress in olive tree at germplasm, metabolome, and transcriptome levels. In this experiment, seedlings of 97 olive germplasm with 1.0-3.0 cm roots and two leaves were treated with 50 µM Al3+ (pH = 5.0). By factor analysis of the traits of defoliation rate, rooting rate, length of extended root, and length of new root, 97 germplasm were classified into five different groups according to their diverse responses to aluminum stress: 5 highly resistant (5.15%), 30 moderately resistant (30.93%), 31 general (31.96%), 23 moderately sensitive (23.71%), and 8 highly sensitive (8.25%) germplasm. The three most sensitive and three most resistant germplasm were further used for metabolome and transcriptome analysis. Exposed to aluminum stress, 96 differentially accumulated metabolites (DAMs)/4,845 differentially expressed genes (DEGs) and 66 DAMs/2,752 DEGs were identified in highly sensitive and resistant germplasm, respectively. Using multi-omics technology, the pathways and related DAMs/DEGs involved in cell wall/cytoplasm receptors, reactive oxygen species balance, hormone induction, synthesis of organic acids, Al3+ transport, and synthesis of metabolites were identified to mainly regulate the response to aluminum stress in olive. This study provides a theoretical guide and prior germplasm and genes for further genetic improvement of aluminum tolerance in the olive tree.

14.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2754-2766, 2022 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-36002408

RESUMEN

The aluminum stress in acidic soil areas of China is an important abiotic stress factor that hampers the normal growth and development of plants and seriously affects the agricultural yield. The forms of plant resistance to aluminum stress are complex and diverse, which include secretion of organic acids, increase of rhizosphere pH, secretion of mucus, cell wall fixation of Al3+, organic acid chelation of Al3+ in cell solute, and vacuolar area isolation. Most of studies focus on analyzing conventional physiological characteristics, but in-depth molecular biological analyses are lacking. This review summarizes the mechanisms how plants adapt to acidic aluminum stress. This includes the effect of acid aluminum stress on plant growth and physiological metabolism, the two main physiological mechanisms of plant adaptation to acid aluminum stress (aluminum exclusion mechanism, aluminum tolerance mechanism), and the aluminum resistance related genes. Finally, this paper puts forward some prospects for further revealing the mechanism of plant adaptation to acid aluminum stress and excavating high-quality crops suitable for cultivation in acidic soils.


Asunto(s)
Adaptación Fisiológica , Aluminio , Ácidos , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Suelo/química
15.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35742961

RESUMEN

Aluminum (Al) toxicity is an essential factor that adversely limits soybean (Glycine max (L.) Merr.) growth in acid soils. WRKY transcription factors play important roles in soybean responses to abiotic stresses. Here, GmWRKY81 was screened from genes that were differentially expressed under Al treatment in Al-tolerant soybean Baxi10 and Al-sensitive soybean Bendi2. We found that GmWRKY81 was significantly induced by 20 µM AlCl3 and upregulated by AlCl3 treatment for 2 h. In different tissues, the expression of GmWRKY81 was differentially induced. In 0-1 cm root tips, the expression of GmWRKY81 was induced to the highest level. The overexpression of GmWRKY81 in soybean resulted in higher relative root elongation, root weight, depth, root length, volume, number of root tips and peroxidase activity but lower root average diameter, malonaldehyde and H2O2 contents, indicating enhanced Al tolerance. Moreover, RNA-seq identified 205 upregulated and 108 downregulated genes in GmWRKY81 transgenic lines. Fifteen of these genes that were differentially expressed in both AlCl3-treated and GmWRKY81-overexpressing soybean had the W-box element, which can bind to the upstream-conserved WRKY domain. Overall, the combined functional analysis indicates that GmWRKY81 may improve soybean Al tolerance by regulating downstream genes participating in Al3+ transport, organic acid secretion and antioxidant reactions.


Asunto(s)
Aluminio , Glycine max , Aluminio/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Meristema/metabolismo , Raíces de Plantas/metabolismo , Glycine max/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
BMC Plant Biol ; 22(1): 306, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35751024

RESUMEN

BACKGROUND: The major aluminum (Al) detoxication mechanism of tea plant (Camellia sinensis), as an Al hyperaccumulator plant, is the fixation of almost 70% of Al in the cell walls. Pectin is the primary constituent of cell walls, a degree of methylation of pectin polysaccharides regulated by the pectin methylesterase (PME) genes can greatly affect the Al binding capacity. The knowledge on PME gene family in tea plant is still poor. RESULTS: We identified 66 (CsPME1-CsPME66) PME genes from C. sinensis genome. We studied their protein characterization, conserved motifs, gene structure, systematic evolution and gene expression under Al treatments, to establish a basis for in-depth research on the function of PMEs in tea plant. Gene structures analysis revealed that the majority of PME genes had 2-4 exons. Phylogenetic results pointed out that the PME genes from the same species displayed comparatively high sequence consistency and genetic similarity. Selective pressure investigation suggested that the Ka/Ks value for homologous genes of PME family was less than one. The expression of CsPMEs under three Al concentration treatments was tissue specific, eight PME genes in leaves and 15 in roots displayed a trend similar to of the Al contents and PME activities under Al concentration treatments, indicating that the degree of pectin de-esterification regulated by PME was crucial for Al tolerance of tea plant. CONCLUSIONS: Sixty-six CsPME genes were identified for the first time in tea plant. The genome-wide identification, classification, evolutionary and transcription analyses of the PME gene family provided a new direction for further research on the function of PME gene in Al tolerance of tea plant.


Asunto(s)
Camellia sinensis , Aluminio/metabolismo , Aluminio/toxicidad , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Pectinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo ,
17.
Front Plant Sci ; 13: 832981, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463451

RESUMEN

Aluminum (Al) toxicity in acid soils influences plant development and yield. Almost 50% of arable land is acidic. Plants have evolved a variety of tolerance mechanisms for Al. In response to the presence of Al, various species exudate citrate from their roots. Rye (Secale cereale L.) secretes both citrate and malate, making it one of the most Al-tolerant cereal crops. However, no research has been done on the role of the mitochondrial citrate synthase (mCS) gene in Al-induced stress in the rye. We have isolated an mCS gene, encoding a mitochondrial CS isozyme, in two S. cereale cultivars (Al-tolerant cv. Ailés and Al-sensitive inbred rye line Riodeva; ScCS4 gene) and in two Brachypodium distachyon lines (Al-tolerant ABR8 line and Al-sensitive ABR1 line; BdCS4 gene). Both mCS4 genes have 19 exons and 18 introns. The ScCS4 gene was located on the 6RL rye chromosome arm. Phylogenetic studies using cDNA and protein sequences have shown that the ScCS4 gene and their ScCS protein are orthologous to mCS genes and CS proteins of different Poaceae plants. Expression studies of the ScCS4 and BdSC4 genes show that the amount of their corresponding mRNAs in the roots is higher than that in the leaves and that the amounts of mRNAs in plants treated and not treated with Al were higher in the Al-tolerant lines than that in the Al-sensitive lines of both species. In addition, the levels of ScCS4 and BdCS4 mRNAs were reduced in response to Al (repressive behavior) in the roots of the tolerant and sensitive lines of S. cereale and B. distachyon.

18.
BMC Plant Biol ; 22(1): 203, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35439932

RESUMEN

BACKGROUND: Tea is one of the most popular non-alcoholic beverages in the world for its flavors and numerous health benefits. The tea tree (Camellia sinensis L.) is a well-known aluminum (Al) hyperaccumulator. However, it is not fully understood how tea plants have adapted to tolerate high concentrations of Al, which causes an imbalance of mineral nutrition in the roots. RESULTS: Here, we combined ionomic and transcriptomic profiling alongside biochemical characterization, to probe the changes of metal nutrients and Al responsive genes in tea roots grown under increasing concentrations of Al. It was found that a low level of Al (~ 0.4 mM) maintains proper nutrient balance, whereas a higher Al concentration (2.5 mM) compromised tea plants by altering micro- and macro-nutrient accumulation into roots, including a decrease in calcium (Ca), manganese (Mn), and magnesium (Mg) and an increase in iron (Fe), which corresponded with oxidative stress, cellular damage, and retarded root growth. Transcriptome analysis revealed more than 1000 transporter genes that were significantly changed in expression upon Al exposure compared to control (no Al) treatments. These included transporters related to Ca and Fe uptake and translocation, while genes required for N, P, and S nutrition in roots did not significantly alter. Transporters related to organic acid secretion, together with other putative Al-tolerance genes also significantly changed in response to Al. Two of these transporters, CsALMT1 and CsALS8, were functionally tested by yeast heterologous expression and confirmed to provide Al tolerance. CONCLUSION: This study shows that tea plant roots respond to high Al-induced mineral nutrient imbalances by transcriptional regulation of both cation and anion transporters, and therefore provides new insights into Al tolerance mechanism of tea plants. The altered transporter gene expression profiles partly explain the imbalanced metal ion accumulation that occurred in the Al-stressed roots, while increases to organic acid and Al tolerance gene expression partly explains the ability of tea plants to be able to grow in high Al containing soils. The improved transcriptomic understanding of Al exposure gained here has highlighted potential gene targets for breeding or genetic engineering approaches to develop safer tea products.


Asunto(s)
Aluminio , Camellia sinensis , Aluminio/metabolismo , Aniones/metabolismo , Camellia sinensis/metabolismo , Cationes/metabolismo , Regulación de la Expresión Génica de las Plantas , Minerales/metabolismo , Nutrientes , Fitomejoramiento , Raíces de Plantas/metabolismo ,
19.
Cells ; 11(5)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269493

RESUMEN

Soils with low pH and high aluminium (Al) contamination restrict common bean production, mainly due to adverse effects on rhizobia. We isolated a novel rhizobium strain, B3, from Kenyan soil which is more tolerant to Al stress than the widely used commercial strain CIAT899. B3 was resistant to 50 µM Al and recovered from 100 µM Al stress, while CIAT899 did not. Calcein labeling showed that less Al binds to the B3 membranes and less ATP and mScarlet-1 protein, a cytoplasmic marker, leaked out of B3 than CIAT899 cells in Al-containing media. Expression profiles showed that the primary targets of Al are genes involved in membrane biogenesis, metal ions binding and transport, carbohydrate, and amino acid metabolism and transport. The identified differentially expressed genes suggested that the intracellular γ-aminobutyric acid (GABA), glutathione (GSH), and amino acid levels, as well as the amount of the extracellular exopolysaccharide (EPS), might change during Al stress. Altered EPS levels could also influence biofilm formation. Therefore, these parameters were investigated in more detail. The GABA levels, extracellular EPS production, and biofilm formation increased, while GSH and amino acid level decreased. In conclusion, our comparative analysis identified genes that respond to Al stress in R. phaseoli. It appears that a large portion of the identified genes code for proteins stabilizing the plasma membrane. These genes might be helpful for future studies investigating the molecular basis of Al tolerance and the characterization of candidate rhizobial isolates that perform better in Al-contaminated soils than commercial strains.


Asunto(s)
Rhizobium phaseoli , Rhizobium , Aluminio/toxicidad , Aminoácidos , Membrana Celular , Kenia , Suelo , Ácido gamma-Aminobutírico
20.
Front Genet ; 13: 1063984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704350

RESUMEN

The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this study, transcriptomics and metabolomics analyses were performed to reveal the mechanism of Al tolerance differences between two rice landraces (Al-tolerant genotype Shibanzhan (KR) and Al-sensitive genotype Hekedanuo (MR) with different Al tolerance. The results showed that DEG related to phenylpropanoid biosynthesis was highly enriched in KR and MR after Al stress, indicating that phenylpropanoid biosynthesis may be closely related to Al tolerance. E1.11.1.7 (peroxidase) was the most significant enzyme of phenylpropanoid biosynthesis in KR and MR under Al stress and is regulated by multiple genes. We further identified that two candidate genes Os02g0770800 and Os06g0521900 may be involved in the regulation of Al tolerance in rice. Our results not only reveal the resistance mechanism of rice to Al stress to some extent, but also provide a useful reference for the molecular mechanism of different effects of Al poisoning on plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA