Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(34): 45640-45659, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39149773

RESUMEN

AlH3 has gained considerable attention as a fuel additive due to its ability to offer high specific impulse and superior combustion performance. However, few studies have focused on the fragmentation and agglomeration behavior of AlH3. This study investigated the effects of fragmentation of AlH3 and AlH3/PVDF particles on the thermal decomposition, ignition, agglomeration, and combustion of HTPB propellants. Thermal analysis indicated that AlH3 and AlH3/PVDF can accelerate the decomposition of ammonium perchlorate by abundant active sites for the adsorption of the decomposition intermediates. Single-particle combustion uncovered the mechanism behind the directional spray of molten Al from the AlH3 particle and the fragmentation of the AlH3/PVDF particle. The melting of porous Al induces particle shrinkage due to solid-liquid interfacial tension and the structural restoration of the oxide shell, which consequently results in the sealing of cracks in the oxide shell of AlH3. Additionally, the accumulation of internal tensile stress leads to the reopening of these cracks and the directional ejection of the molten Al. The flexible oxide shell contributes to a smaller minimum normalized diameter of the AlH3/PVDF particle, aiding in the generation of internal tensile stress, while the sublimation of AlF3 induced the fragmentation. Synchrotron-based X-ray imaging revealed the formation of aggregates promoted by molten Al, the splitting of AlH3 aggregates due to hydrogen explosion, and the enhanced fragmentation of AlH3/PVDF due to the synergistic effect of hydrogen explosion and the sublimation of AlF3. Compared to raw particles, the CCPs (condensed combustion products) of SP2 propellant display a 48% reduction in average size (D50 = 24.5 µm), whereas there is an over 89% decrease in particle size for the CCPs of SP3 propellant (D50 = 5.14 µm). This study contributes to understanding the fragmentation of AlH3 and AlH3/PVDF upon ignition and combustion, providing valuable insights for the development and optimization of propellants containing AlH3.

2.
Small ; 20(24): e2309609, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38150642

RESUMEN

V-based solid solution materials hold a significant position in the realm of hydrogen storage materials because of its high hydrogen storage capacity. However, the current dehydrogenation temperature of V-based solid solution exceeds 350 °C, making it challenging to fulfill the appliance under moderate conditions. Here advancements in the hydrogen storage properties and related mechanisms of TiV1.1Cr0.3Mn0.6 + x LiAlH4 (x = 0, 5, 8, 10 wt.%) composites is presented. According to the first principle calculation analysis, the inclusion of Al and Li atoms will lower the binding energy of hydride, thus enhancing the hydrogen absorption reaction and significantly decreasing the activation difficulty. Furthermore, based on crystal orbital Hamilton population (COHP) analysis, the strength of the V─H and Ti─H bonds after doping LiAlH4 are reduced, leading to a decrease of the hydrogen release activation energy (Ea) for the V-based solid solution material, thus the hydrogen release process is easier to carry out. Additionally, the structure of doped LiAlH4 exhibits an outstanding hydrogen release rate of 2.001 wt.% at 323 K and remarkable cycling stability.

3.
ACS Appl Mater Interfaces ; 15(42): 49611-49622, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37830898

RESUMEN

Aluminum hydride (AlH3) has attracted much attention due to its potential to replace aluminum (Al) as a novel energetic material in solid propellants. In this research, ammonium perchlorate (AP) and perfluoropolyether (PFPE) as functionalized coatings and a combination of acoustic resonance and spray drying technology have been employed to prepare AlH3@Al@AP (AHAPs) and AlH3@Al@AP@PFPE (AHAPs-F) energetic composite particles. The formulations of composite propellants and modified AlH3 particles were designed and fabricated. Their thermal reactivity, reaction heat, density, vacuum stability, combustion performance, and condensed combustion products (CCPs) have been systematically investigated. The results show that the solid propellants containing AHAPs (SP13) and AHAPs-F (SP14) composites can significantly enhance the reactivity and energy output compared to conventional solid propellants with the mechanical mixture Al/AlH3 (SP12). In particular, the total heat releases of SP13 and SP14 are almost 1.2 and 1.7 times higher than those of conventional ones (SP12, 1442 J g-1), respectively. Among the AlH3-based propellants, SP14 propellants exhibit the highest reaction heat of 5887 J g-1, the most intensive flame radiation of 31.4 × 103, and the highest combustion wave temperature of 2495 °C. Moreover, the particle size distribution of CCPs from SP14 propellants is much narrower and smaller than that of SP12, resulting in higher combustion efficiency.

4.
Small ; 18(17): e2107983, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35307952

RESUMEN

The high dehydrogenation temperature of aluminum hydride (AlH3 ) has always been an obstacle to its application as a portable hydrogen source. To solve this problem, lithium nitride is introduced into the aluminum hydride system as a catalyst to optimize the dehydrogenation drastically, which reduces the initial dehydrogenation temperature from 140.0 to 66.8 °C, and provides a stable hydrogen capacity of 8.24, 6.18, and 5.75 wt.% at 100, 90, and 80 °C within 120 min by adjusting the mass fraction of lithium nitride. Approximately 8.0 wt.% hydrogen can be released within 15 min at 100 °C for the sample of 10 wt.% doping. Moderate dehydrogenation temperature slows down the inevitable self-dehydrogenation process during the ball-milling process, and the enhanced kinetics at lower temperature shows the possibility of application in the fuel cell.

5.
ACS Appl Mater Interfaces ; 13(23): 26998-27005, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34075754

RESUMEN

The pivotal steps for the practical application of dehydrogenation of aluminum hydride (AlH3) have been to decrease the temperature and increase the content of AlH3. Herein, the initial dehydrogenation temperature of AlH3 decreased to 43 °C with the amount of released hydrogen of 8.3 wt % via introducing TiO2 and Pr6O11 with synergistic catalysis effects, and its apparent activation energy of the dehydrogenation reaction decreased to 56.1 kJ mol-1, which is 52% lower than that of pure AlH3. These differences in performances of the samples are further evaluated by determining the electron density of Al-H bonds during dehydrogenation. The multiple valence state conversions of TiO2 and Pr6O11 promoted the electron transfer of H in AlH3, and a novel dehydrogenation pathway of PrH2.37 formed simultaneously, which could accelerate the breakage of Al-H bonds. The density functional theory calculations further exhibit that there are fewer electrons around H in AlH3 and the Al-H bond energy is weaker at the atomic levels, which is more conducive to the release of hydrogen. A higher hydrogen storage capacity and a lower dehydrogenation temperature make AlH3 one of the most promising hydrogen source media for mobile applications.

6.
Appl Radiat Isot ; 170: 109582, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33561749

RESUMEN

In-beam Mössbauer spectra of 57Mn implanted into LiAlH4 were measured at different temperatures between 17 and 300 K. The Mössbauer spectrum measured at 17 K showed two sets of doublets, which were assigned to 57Fe atoms at substitutional sites at Al3+ and Li+ sites. The Debye temperatures θM for the 57Fe atoms at Al3+-substituted and Li+-substituted sites were estimated to be 194 K and 117 K, respectively. The assignments were confirmed by density functional theory calculations.

7.
Front Chem ; 8: 457, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32656179

RESUMEN

In this study, the modification of the desorption behavior of LiAlH4 by the addition of K2NbF7 was explored for the first time. The addition of K2NbF7 causes a notable improvement in the desorption behavior of LiAlH4. Upon the addition of 10 wt.% of K2NbF7, the desorption temperature of LiAlH4 was significantly lowered. The desorption temperature of the LiAlH4 + 10 wt.% K2NbF7 sample was lowered to 90°C (first-stage reaction) and 149°C (second-stage reaction). Enhancement of the desorption kinetics performance with the LiAlH4 + 10 wt.% K2NbF7 sample was substantiated, with the composite sample being able to desorb hydrogen 30 times faster than did pure LiAlH4. Furthermore, with the presence of 10 wt.% K2NbF7, the calculated activation energy values for the first two desorption stages were significantly reduced to 80 and 86 kJ/mol; 24 and 26 kJ/mol lower than the as-milled LiAlH4. After analysis of the X-ray diffraction result, it is believed that the in situ formation of NbF4, LiF, and K or K-containing phases that appeared during the heating process promoted the amelioration of the desorption behavior of LiAlH4 with the addition of K2NbF7.

8.
Drug Test Anal ; 12(10): 1483-1493, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32608093

RESUMEN

Since 2006, there has been a resurgent interest in the pharmacology and therapeutics of psychedelic drugs. Psilocybin, the 4-phosphoryl ester of N,N-dimethyltryptamine (DMT), has been studied most often, but DMT itself is also appealing because of its brief but profound psychological effects and its presence as an endogenous substance in mammalian brain. Although there have been a few studies of ayahuasca, a DMT-containing water infusion, only one human study with pure DMT has been reported since the early 2000s. Newly planned clinical trials to assess the safety and efficacy of DMT in humans with major depressive disorders require high-purity water-soluble DMT for intravenous administration. Accordingly, we synthesized and characterized DMT hemifumarate for these upcoming studies. The synthetic approach of Speeter and Anthony was slightly modified to gain some efficiency in time. In particular, this is the first known report to use aluminum hydride, generated in situ from lithium aluminum hydride, to reduce the intermediate 2-(1H-indol-3-yl)-N,N-dimethyl-2-oxoacetamide to DMT. A quench protocol was developed to produce a good yield of exceptionally pure free base DMT upon workup, which was then converted to the hemifumarate salt. Analysis of the final product included differential scanning calorimetry, thermogravimetric analysis, gas chromatography-mass spectrometry (GC-MS), 1 H and 13 C nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, residual solvent analysis by GC headspace sampling, X-ray powder diffraction analysis, and residual lithium analysis by inductively coupled plasma-mass spectrometry. The DMT hemifumarate was minimally 99.9% pure, with no significant impurities or residual solvents, thus meeting regulatory standards for administration to humans.


Asunto(s)
Alucinógenos/síntesis química , N,N-Dimetiltriptamina/síntesis química , Aluminio/química , Técnicas de Química Sintética , Ensayos Clínicos como Asunto , Cromatografía de Gases y Espectrometría de Masas , Alucinógenos/química , Humanos , N,N-Dimetiltriptamina/análogos & derivados
9.
Chemphyschem ; 20(10): 1360-1368, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30657245

RESUMEN

Two approaches for the synthesis of the triethylenediamine (TEDA) ⋅ AlH3 adduct have been discovered. Both, the mechanochemical procedure and the wet chemical method lead to crystalline products. Starting from metallic Al powder and TEDA, ball milling under a pressure of 100 bar H2 facilitates a direct hydrogenation of aluminum with conversions up to 90 %. Structure determination from X-ray powder diffraction data revealed an 1-D-coordination polymer of the type [TEDA-AlH3 ]n . Furthermore, solid-state NMR techniques have been applied to analyze composition and structure of the products. Due to the polymeric arrangement, an enhanced stability of the material occurred which was investigated by thermal analysis showing a decomposition located above 200 °C. Overall, the stabilization of AlH3 by TEDA holds promise for hydrogen storage applications.

10.
ACS Appl Mater Interfaces ; 11(5): 4930-4941, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30630309

RESUMEN

Solid-state metal hydrides are prime candidates to replace compressed hydrogen for fuel cell vehicles due to their high volumetric capacities. Sodium aluminum hydride has long been studied as an archetype for higher-capacity metal hydrides, with improved reversibility demonstrated through the addition of titanium catalysts; however, atomistic mechanisms for surface processes, including hydrogen desorption, are still uncertain. Here, operando and ex situ measurements from a suite of diagnostic tools probing multiple length scales are combined with ab initio simulations to provide a detailed and unbiased view of the evolution of the surface chemistry during hydrogen release. In contrast to some previously proposed mechanisms, the titanium dopant does not directly facilitate desorption at the surface. Instead, oxidized surface species, even on well-protected NaAlH4 samples, evolve during dehydrogenation to form surface hydroxides with differing levels of hydrogen saturation. Additionally, the presence of these oxidized species leads to considerably lower computed barriers for H2 formation compared to pristine hydride surfaces, suggesting that oxygen may actively participate in hydrogen release, rather than merely inhibiting diffusion as is commonly presumed. These results demonstrate how close experiment-theory feedback can elucidate mechanistic understanding of complex metal hydride chemistry and potentially impactful roles of unavoidable surface impurities.

11.
Front Chem ; 7: 892, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010663

RESUMEN

Aluminum hydride (AlH3) is a promising candidate for hydrogen storage due to its high hydrogen density of 10 wt%. Several polymorphs of AlH3 (e.g., α, ß, and γ) have been successfully synthesized by wet chemical reaction of LiAlH4 and AlCl3 in ether solution followed by desolvation. However, the synthesis process of α'-AlH3 from wet chemicals still remains unclear. In the present work, α'-AlH3 was synthesized first by the formation of the etherate AlH3 through a reaction of LiAlH4 and AlCl3 in ether solution. Then, the etherate AlH3 was heated at 60°C under an ether gas atmosphere and in the presence of excess LiAlH4 to remove the ether ligand. Finally, α'-AlH3 was obtained by ether washing to remove the excess LiAlH4. It is suggested that the desolvation of the etherate AlH3 under an ether gas atmosphere is essential for the formation of α'-AlH3 from the etherate AlH3. The as-synthesized α'-AlH3 takes the form of rod-like particles and can release 7.7 wt% hydrogen in the temperature range 120-200°C.

12.
Chemistry ; 24(19): 4794-4799, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29451336

RESUMEN

New three-coordinate and electronically unsaturated aluminum hydride [LAlH]+ [HB(C6 F5 )3 ]- (LH=[{(2,6-iPr2 C6 H3 N)P(Ph2 )}2 N]H) and aluminum methyl [LAlMe]+ [MeB(C6 F5 )3 ]- cations have been prepared. The quantitative estimation of Lewis acidity by Gutmann-Beckett method revealed [LAlH]+ [HB(C6 F5 )3 ]- to be better Lewis acid than B(C6 F5 )3 and AlCl3 making these compounds ideal catalysts for Lewis acid-mediated reactions. To highlight that the work is of fundamental importance, catalytic hydroboration of aliphatic and aromatic aldehydes and ketones have been demonstrated. Important steps of the catalytic cycle have been probed by using multinuclear NMR measurements, including successful characterization of the proposed aluminum benzyloxide cationic intermediate, [LAl-O-CH2 Ph]+ [HB(C6 F5 )3 ]- . The proposed catalytic cycle has been found to be consistent with experimental observations and computational studies clearly indicating the migration of hydride from cationic aluminum center to the carbonyl carbon is the rate-limiting step of the catalytic cycle.

13.
Angew Chem Int Ed Engl ; 56(52): 16593-16596, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29098758

RESUMEN

The Al=Al double bond is elusive in chemistry. Herein we report the results obtained via combined photoelectron spectroscopy and ab initio studies of the LiAl2 H4- cluster that confirm the formation of a conventional Al=Al double bond. Comprehensive searches for the most stable structures of the LiAl2 H4- cluster have shown that the global minimum isomer I possesses a geometric structure which resembles that of Si2 H4 , demonstrating a successful example of the transmutation of Al atoms into Si atoms by electron donation. Theoretical simulations of the photoelectron spectrum discovered the coexistence of two isomers in the ion beam, including the one with the Al=Al double bond.

14.
Chemistry ; 23(55): 13633-13637, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28833747

RESUMEN

The 2-aminophenylaluminum dihydride (2-TMP-C6 H4 )AlH2  (2) has been prepared and characterized for the first time. Compound 2 features an intramolecular N⋅⋅⋅Al donor-acceptor bond. 2 reacted with N-methylpyrrole and N-methylindole (both at 50 °C) by means of the elusive AlH C(sp2 )-H dehydroalumination to aluminum heteroaryls (3 and 4). Moreover, 2 reacted with PhCCSiMe3 (at room temperature) and Ph2 CCNR (R=iPr or 2,6-iPr2 C6 H3 , at -30 to 20 °C ) to yield aluminaindene heterocycle (8) and alumina-aza-naphthalene heterocycle (9 and 10), respectively. These reactions underwent hydroalumination followed by AlH C(sp2 )-H dehydroalumination. The reaction mechanism has been studied by combining experiment and quantum chemical calculations, with the result that the key heteroarene or arene C(sp2 )-H bond activation is involved under cooperative interaction by the inherent N/Al donor/acceptor pair. The reported reactions open a straightforward route to heteroaryl and unique heterocyclic aluminum compounds.

15.
Angew Chem Int Ed Engl ; 55(41): 12877-80, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27529165

RESUMEN

Activation of dihydrogen by masked dialumenes (Al=Al doubly bonded species) is reported. Reactions of barrelene-type dialumanes, which have the reactivity as masked equivalents of 1,2-diaryldialumenes ArAl=AlAr, with H2 afforded dihydroalumanes ArAlH2 at room temperature (Ar: bulky aryl groups). These dihydroalumanes form hydrogen-bridged dimers [ArHAl(µ-H)]2 in the crystalline state, while a monomer-dimer equilibrium was suggested in solution. The 1,2-diaryldialumenes generated from the barrelene-type dialumanes are the putative active species in the cleavage of H2 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA