Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 173(Pt 1): 113243, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803556

RESUMEN

The physicochemical properties of starch vary depending on the botanical sources, thereby influencing the gelatinisation/retrogradation properties and subsequently affecting the hydrogels characteristics. This study aimed to assess the influence of botanical sources influence on starch and hydrogel properties using non-conventional starch derived from guabiju, pinhão, and uvaia seeds. Hydrogels were prepared by starch gelatinisation followed by 6 h ageing period at room temperature (20 ± 2 °C) and subjected to five freeze-thaw cycles. Pinhão starch exhibited a higher viscosity peak and breakdown, along with a lower final viscosity and setback, compared to guabiju and uvaia starches. The significantly different pasting properties influenced the porous microstructure, water absorption (p-value: 0.01), and resistance of the hydrogels (p-value: 0.01). The guabiju starch hydrogels showed a uniform pore structure without cavities, whereas pinhão and uvaia starch hydrogels exhibited agglomerated and spongy pore structures. Furthermore, the guabiju starch hydrogel demonstrated the lowest water absorption (4.56 g/g) and the highest compression resistance (1448.50 g) among all the studied starch hydrogels. In contrast, the pinhão starch hydrogel showed the highest water absorption (7.43 g/; p-value: 0.01) among all studied starch hydrogels. The hardness of uvaia starch hydrogel did not differ significantly from the guabiju and pinhão starch hydrogel. The different non-conventional starches reveal important variations in the hydrogels characteristics. This provides insights into how amylose and amylopectin interact and present alternatives for using these unique starch-based hydrogels in diverse applications.


Asunto(s)
Hidrogeles , Almidón , Almidón/química , Amilosa/análisis , Semillas/química , Agua/química
2.
Polymers (Basel) ; 14(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36501702

RESUMEN

Increased demand for wood affects its price and thus contributes to the growing interest in raw materials that can be used as a partial or total substitute for wood in the production of particleboard. One of the raw materials for the production of particleboard can be Cannabis sativa or, more precisely, hemp shives. In this work, 7 variants of panels with a density of 650 kg/m3 with 10 and 25% hemp shives substitution in different layers were produced. Particleboards containing hemp shives were characterized by lower density compared to conventional particleboards. The shares of hemp shives at the levels of 10% and 25% have a slight impact on the MOR and MOE; additional IB showed no statistically significant differences between the conventional particleboards and particleboards with a share of hemp shives. For particleboards with 25% hemp shives, a reduction in swelling was observed relative to particleboards made entirely of industrial wood particles.

3.
Materials (Basel) ; 15(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36295468

RESUMEN

The paper presents experimental results regarding the synthesis of Portland clinker starting from raw mixes based on two types of clayey precursors, i.e., clay and marl (the most common types of raw materials used in the cement industry), with and without glass waste content. The soda-lime glass waste addition (5.36-5.59 wt %), used to control the silica ratio of the raw mix, improved the raw mix burnability and decreased the calcination temperature (by 20 °C), leading to a decrease in fuel consumption and contributing to the reduction in CO2 emissions associated with clinker and cement production. The clinkers obtained by the calcination of raw mixes with glass waste content at 1430 °C with a 30 min plateau had a similar mineralogical composition and microstructure to the clinkers obtained from the reference raw mixes and fulfilled the requirements of the specific standard EN 197-1. The obtained clinkers were used to produce two types of Portland cement, i.e., a unitary cement (CEM I) and a binary blended cement with slag (CEM II/B-S). The main characteristics of these cements, i.e., loss on ignition, insoluble residue, sulfate and chloride contents, as well as the setting time and soundness, meet the conditions stipulated in the EN 197-1 standard. The values of compressive strength, assessed on mortars after 2, 7 and 28 days of curing, allow the classification of all CEM I cements in the 42.5 R class. In the case of CEM II/B-S cements, those obtained from raw mixes with clay can be classified in the 42.5 N class, while those obtained from raw mixes with marl are classified in the 32.5 R class.

4.
Materials (Basel) ; 15(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35207821

RESUMEN

The depletion of natural resources and increased demand for wood and wood-based materials have directed researchers and the industry towards alternative raw materials for composite manufacturing, such as agricultural waste and wood residues as substitutes of traditional wood. The potential of reusing walnut (Juglans regia L.) wood residues as an alternative raw material in particleboard manufacturing is investigated in this work. Three-layer particleboard was manufactured in the laboratory with a thickness of 16 mm, target density of 650 kg∙m-3 and three different levels (0%, 25% and 50%) of walnut wood particles, bonded with urea-formaldehyde (UF) resin. The physical properties (thickness swelling after 24 h) and mechanical properties (bending strength, modulus of elasticity and internal bond strength) were evaluated in accordance with the European standards. The effect of UF resin content and nominal applied pressure on the properties of the particleboard was also investigated. Markedly, the laboratory panels, manufactured with 50% walnut wood residues, exhibited flexural properties and internal bond strength, fulfilling the European standard requirements to particleboards used in load-bearing applications. However, none of the boards met the technical standard requirements for thickness swelling (24 h). Conclusively, walnut wood residues as a waste or by-product of the wood-processing industry can be efficiently utilized in the production of particleboard in terms of enhancing its mechanical properties.

5.
Waste Manag ; 84: 286-301, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30691903

RESUMEN

The aluminum anodizing process generates a large volume of waste composed mainly of amorphous aluminum hydroxide with chemical compatibility to be used in other industrial processes as an alternative starting raw material. This waste has several application possibilities such as the production of refractories, ceramic pigments, bricks, and many others. However, despite its potential features, its recycling process is far from well consolidated. This work highlights the most important contributions regarding Al-anodizing waste (AAW) features and their potential applications from the last 30 years. We provide the most complete and detailed characterization of AAW including chemical, physical, thermal, and microstructural analysis. The characterization analyzes were performed in a Brazilian waste sample and were compared with AAW worldwide. Additionally, our characterization results also considered differentiate previous processing; this, it many other possibilities are suggested that have not been explored thus far. The recycling feasibility of AAW is discussed according to the following criteria: classification, including legislation and standards; potentiality, including physical and chemical characteristics and purity; quantity, including production data; viability, including availability, costs regarding disposal and recycling process, and available technology for recycling; and applicability, including market opportunities. Moreover, alumina recovery from AAW and the related environmental aspects are discussed.


Asunto(s)
Aluminio , Reciclaje , Óxido de Aluminio , Brasil , Cerámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA