Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Genomics Proteomics Bioinformatics ; 19(6): 882-900, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33607297

RESUMEN

The secondary structure is a fundamental feature of both non-coding RNAs (ncRNAs) and messenger RNAs (mRNAs). However, our understanding of the secondary structures of mRNAs, especially those of the coding regions, remains elusive, likely due to translation and the lack of RNA-binding proteins that sustain the consensus structure like those binding to ncRNAs. Indeed, mRNAs have recently been found to adopt diverse alternative structures, but the overall functional significance remains untested. We hereby approach this problem by estimating the folding specificity, i.e., the probability that a fragment of an mRNA folds back to the same partner once refolded. We show that the folding specificity of mRNAs is lower than that of ncRNAs and exhibits moderate evolutionary conservation. Notably, we find that specific rather than alternative folding is likely evolutionarily adaptive since specific folding is frequently associated with functionally important genes or sites within a gene. Additional analysis in combination with ribosome density suggests the ability to modulate ribosome movement as one potential functional advantage provided by specific folding. Our findings reveal a novel facet of the RNA structurome with important functional and evolutionary implications and indicate a potential method for distinguishing the mRNA secondary structures maintained by natural selection from molecular noise.


Asunto(s)
Pliegue del ARN , Ribosomas , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , ARN Mensajero/metabolismo , Ribosomas/metabolismo
2.
J Biol Chem ; 295(35): 12437-12448, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32651228

RESUMEN

FimA is the main structural subunit of adhesive type 1 pili from uropathogenic Escherichia coli strains. Up to 3000 copies of FimA assemble to the helical pilus rod through a mechanism termed donor strand complementation, in which the incomplete immunoglobulin-like fold of each FimA subunit is complemented by the N-terminal extension (Nte) of the next subunit. The Nte of FimA, which exhibits a pseudo-palindromic sequence, is inserted in an antiparallel orientation relative to the last ß-strand of the preceding subunit in the pilus. The resulting subunit-subunit interactions are extraordinarily stable against dissociation and unfolding. Alternatively, FimA can fold to a self-complemented monomer with anti-apoptotic activity, in which the Nte inserts intramolecularly into the FimA core in the opposite, parallel orientation. The FimA monomers, however, show dramatically lower thermodynamic stability compared with FimA subunits in the assembled pilus. Using self-complemented FimA variants with reversed, pseudo-palindromic extensions, we demonstrate that the high stability of FimA polymers is primarily caused by the specific interactions between the side chains of the Nte residues and the FimA core and not by the antiparallel orientation of the donor strand alone. In addition, we demonstrate that nonequilibrium two-state folding, a hallmark of FimA with the Nte inserted in the pilus rod-like, antiparallel orientation, only depends on the identity of the inserted Nte side chains and not on Nte orientation.


Asunto(s)
Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Escherichia coli/química , Escherichia coli/genética , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Fimbrias Bacterianas/química , Fimbrias Bacterianas/genética , Dominios Proteicos
3.
J Biol Chem ; 294(27): 10553-10563, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31126987

RESUMEN

Adhesive type 1 pili from enteroinvasive, Gram-negative bacteria mediate attachment to host cells. Up to 3000 copies of the main pilus subunit, FimA, assemble into the filamentous, helical quaternary structure of the pilus rod via a mechanism termed donor-strand complementation, in which the N-terminal extension of each subunit, the donor strand, is inserted into the incomplete immunoglobulin-like fold of the preceding FimA subunit. For FimA from Escherichia coli, it has been previously shown that the protein can also adopt a monomeric, self-complemented conformation in which the donor strand is inserted intramolecularly in the opposite orientation relative to that observed for FimA polymers. Notably, soluble FimA monomers can act as apoptosis inhibitors in epithelial cells after uptake of type 1-piliated pathogens. Here, we show that the FimA orthologues from Escherichia coli, Shigella flexneri, and Salmonella enterica can all fold to form self-complemented monomers. We solved X-ray structures of all three FimA monomers at 0.89-1.69 Å resolutions, revealing identical, intramolecular donor-strand complementation mechanisms. Our results also showed that the pseudo-palindromic sequences of the donor strands in all FimA proteins permit their alternative folding possibilities. All FimA monomers proved to be 50-60 kJ/mol less stable against unfolding than their pilus rod-like counterparts (which exhibited very high energy barriers of unfolding and refolding). We conclude that the ability of FimA to adopt an alternative, monomeric state with anti-apoptotic activity is a general feature of FimA proteins of type 1-piliated bacteria.


Asunto(s)
Escherichia coli/metabolismo , Proteínas Fimbrias/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas Fimbrias/metabolismo , Cinética , Pliegue de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína , Salmonella enterica/metabolismo , Alineación de Secuencia , Shigella flexneri/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA