Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 737
Filtrar
1.
ACS Nano ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282726

RESUMEN

Perovskite-based flexible electroluminescent (EL) devices are emerging as promising candidates in the display field due to their exceptional optoelectronic properties and potential for cost-effective production. However, simultaneously achieving high EL performance, excellent flexibility and stretchability, robust mechanical strength, and diverse applications remains a significant challenge. In this review, we provide a comprehensive overview of the latest developments in perovskite-based flexible EL devices, covering both direct-current (DC) and alternating-current (AC) electroluminescent formats. Our discussion encompasses the materials, working principles, device architectures, failure mechanisms, optimization strategies, and practical applications. Through this review, we aim to deepen our understanding of the current challenges and future directions of perovskite-based flexible light-emitting technologies, hoping to facilitate their potential commercial applications.

2.
Sci Total Environ ; 952: 175959, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39222814

RESUMEN

In this study, electrochemical dechlorination and detoxification of a mixture of chlorinated ethylenes was investigated under various conditions using a double monoatomic synergistic metal catalytic cathode. Electrocatalytic degradation of mixed chlorinated with stepwise voltage and alternating current exhibited excellent dechlorination efficiency. The removal ratios of 1,2-dichloroethylene (1,2-DCE), trichloroethylene (TCE), and tetrachloroethylene (PCE) reached 78.79 %, 79.27 %, and 93.44 % in 10 min, and 98.14 %, 97.56 %, and 98.70 % in 30 min, respectively. The toxicity was evaluated using a quantitative structure-activity relationship model. The cumulative toxicity was reduced to 8.00 % of the initial cumulative toxicity in 30 min. An electrochemical dechlorination strategy for selective degradation and detoxification of mixtures of chlorinated pollutants is proposed. Controlled dechlorination and detoxification under low-voltage control avoided the accumulation of toxic intermediates. Cumulative toxicity was reduced by strategies of selective dechlorination, and segmented and alternating current decreased the energy consumption. The strategy provides a basis for alternating current electrocatalytic dechlorination associated with mixed chlorinated pollutants treatment.

3.
J Alzheimers Dis ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39269839

RESUMEN

Background: Transcranial alternating current stimulation (tACS) could improve cognition in patients with Alzheimer's disease (AD). However, the effects of tACS on brain activity remain unclear. Objective: The purpose is to investigate the change in regional neuronal activity after tACS in AD patients employing resting-state functional magnetic resonance imaging (rs-fMRI). Methods: A total of 46 patients with mild AD were enrolled. Each patient received 30 one-hour sessions of real or sham tACS for three weeks (clinical trial: NCT03920826). The fractional amplitude of low-frequency fluctuations (fALFF) and the regional homogeneity (ReHo) measured by rs-fMRI were calculated to evaluate the regional brain activity. Results: Compared to baseline, AD patients in the real group exhibited increased fALFF in the left middle frontal gyrus-orbital part and right inferior frontal gyrus-orbital part, as well as increased ReHo in the left precentral gyrus and right middle frontal gyrus at the end of intervention. At the 3-month follow-up, fALFF increased in the left superior parietal lobule and right inferior temporal gyrus, as well as ReHo, in the left middle frontal gyrus and right superior medial frontal gyrus. A higher fALFF in the right lingual gyrus and ReHo in the right parahippocampal gyrus were observed in the response group than in the nonresponse group. Conclusions: The findings demonstrated the beneficial effects of tACS on the neuronal activity of the prefrontal cortex and even more extensive regions and provided a neuroimaging biomarker of treatment response in AD patients.

4.
Adv Exp Med Biol ; 1456: 129-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39261427

RESUMEN

The exploration of brain stimulation methods offers a promising avenue to overcome the shortcomings of traditional drug therapies and psychological treatments for major depressive disorder (MDD). Over the past years, there has been an increasing focus on transcranial electrical stimulation (tES), notably for its ease of use and potentially fewer side effects. This chapter delves into the use of transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), which are key components of tES, in managing depression. It begins by introducing tDCS and tACS, summarizing their action mechanisms. Following this introduction, the chapter provides an in-depth analysis of existing meta-analyses, systematic reviews, clinical studies, and case reports that have applied tES in MDD treatment. It also considers the role of tES in personalized medicine by looking at specific patient groups and evaluating research on possible biomarkers that could predict how patients with MDD respond to tES therapy.


Asunto(s)
Trastorno Depresivo Mayor , Estimulación Transcraneal de Corriente Directa , Trastorno Depresivo Mayor/terapia , Trastorno Depresivo Mayor/fisiopatología , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Medicina de Precisión/métodos , Resultado del Tratamiento , Encéfalo/fisiopatología
5.
Brain Stimul ; 17(5): 1076-1085, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245294

RESUMEN

BACKGROUND: Theta-gamma transcranial alternating current stimulation (tACS) was recently found to enhance thumb acceleration in young, healthy participants, suggesting a potential role in facilitating motor skill acquisition. Given the relevance of motor skill acquisition in stroke rehabilitation, theta-gamma tACS may hold potential for treating stroke survivors. OBJECTIVE: We aimed to examine the effects of theta-gamma tACS on motor skill acquisition in young, healthy participants and stroke survivors. METHODS: In a pre-registered, double-blind, randomized, sham-controlled study, 78 young, healthy participants received either theta-gamma peak-coupled (TGP) tACS, theta-gamma trough-coupled (TGT) tACS or sham stimulation. 20 individuals with a chronic stroke received either TGP or sham. TACS was applied over motor cortical areas while participants performed an acceleration-dependent thumb movement task. Stroke survivors were characterized using standardized testing, with a subgroup receiving additional structural brain imaging. RESULTS: Neither TGP nor TGT tACS significantly modified general motor skill acquisition in the young, healthy cohort. In contrast, in the stroke cohort, TGP diminished motor skill acquisition compared to sham. Exploratory analyses revealed that, independent of general motor skill acquisition, healthy participants receiving TGP or TGT exhibited greater peak thumb acceleration than those receiving sham. CONCLUSION: Although theta-gamma tACS increased thumb acceleration in young, healthy participants, consistent with previous reports, it did not enhance overall motor skill acquisition in a more complex motor task. Furthermore, it even had detrimental effects on motor skill acquisition in stroke survivors.

6.
Alzheimers Res Ther ; 16(1): 203, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267112

RESUMEN

BACKGROUND: The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity. METHODS: This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization. RESULTS: A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus. CONCLUSION: Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.


Asunto(s)
Enfermedad de Alzheimer , Electroencefalografía , Hipocampo , Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Método Doble Ciego , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología , Electroencefalografía/métodos , Resultado del Tratamiento , Persona de Mediana Edad , Ritmo Gamma/fisiología , Pruebas Neuropsicológicas , Cognición/fisiología
7.
J Neuroeng Rehabil ; 21(1): 157, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267118

RESUMEN

Many studies over the recent decades have attempted the modulation of motor learning using brain stimulation. Alternating currents allow for researchers not only to electrically stimulate the brain, but to further investigate the effects of specific frequencies, in and beyond the context of their endogenous associations. Transcranial alternating current stimulation (tACS) has therefore been used during motor learning to modulate aspects of acquisition, consolidation and performance of a learned motor skill. Despite numerous reviews on the effects of tACS, and its role in motor learning, there are few studies which synthesize the numerous frequencies and their respective theoretical mechanisms as they relate to motor and perceptual processes. Here we provide a short overview of the main stimulation frequencies used in motor learning modulation (e.g., alpha, beta, and gamma), and discuss the effect and proposed mechanisms of these studies. We summarize with the current state of the field, the effectiveness and variability in motor learning modulation, and novel mechanistic proposals from other fields.


Asunto(s)
Aprendizaje , Destreza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Aprendizaje/fisiología , Destreza Motora/fisiología , Corteza Motora/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-39275796

RESUMEN

Emotional experiences deeply impact our bodily states, such as when we feel 'anger', our fists close and our face burns. Recent studies have shown that emotions can be mapped onto specific body areas, suggesting a possible role of the primary somatosensory system (S1) in emotion processing. To date, however, the causal role of S1 in emotion generation remains unclear. To address this question, we applied transcranial alternating current stimulation (tACS) on the S1 at different frequencies (beta, theta and sham) while participants saw emotional stimuli with different degrees of pleasantness and level of arousal. Results showed that modulation of S1 influenced subjective emotional ratings as a function of the frequency applied. While theta and beta-tACS made participants rate the emotional images as more pleasant (higher valence), only theta-tACS lowered the subjective arousal ratings (more calming). Skin conductance responses recorded throughout the experiment confirmed a different arousal for pleasant vs unpleasant stimuli. Our study revealed that S1 has a causal role in the feeling of emotions, adding new insight into the embodied nature of emotions. Importantly, we provided causal evidence that beta and theta frequencies contribute differently to the modulation of two dimensions of emotions - arousal and valence - corroborating the view of a dissociation between these two dimensions of emotions.

9.
Neurol Sci ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096396

RESUMEN

BACKGROUND: The blink reflex excitability, assessed through paired electrical stimuli responses, has been modulated using traditional non-invasive neurostimulation techniques. Recently, transcranial Alternating Current Stimulation (tACS) emerged as a tool to modulate brain oscillations implicated in various motor, perceptual, and cognitive functions. This study aims to investigate the influence of 20-Hz and 10-Hz tACS sessions on the primary motor cortex and their impact on blink reflex excitability. MATERIALS AND METHODS: Fifteen healthy volunteers underwent 10-min tACS sessions (intensity 1 mA) with active/reference electrodes placed over C4/Pz, delivering 20-Hz, 10-Hz, and sham stimulation. The blink reflex recovery cycle (BRrc) was assessed using the R2 amplitude ratio at various interstimulus intervals (ISIs) before (T0), immediately after (T1), and 30 min post-tACS (T2). RESULTS: Both 10-Hz and 20-Hz tACS sessions significantly increased R2 ratio at T1 (10-Hz: p = 0.02; 20-Hz: p < 0.001) and T2 (10-Hz: p = 0.01; 20-Hz: p < 0.001) compared to baseline (T0). Notably, 20-Hz tACS induced a significantly greater increase in blink reflex excitability compared to sham at both T1 (p = 0.04) and T2 (p < 0.001). CONCLUSION: This study demonstrates the modulatory effect of tACS on trigemino-facial reflex circuits, with a lasting impact on BRrc. Beta-band frequency tACS exhibited a more pronounced effect than alpha-band frequency, highlighting the influential role of beta-band oscillations in the motor cortex on blink reflex excitability modulation.

10.
Front Neurosci ; 18: 1471095, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165338

RESUMEN

[This corrects the article DOI: 10.3389/fnins.2023.1255124.].

11.
Front Neurosci ; 18: 1409492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156631

RESUMEN

Background: Transcranial alternating current stimulation (tACS) can apply currents of varying intensity to the scalp, modulating cortical excitability and brain activity. tACS is a relatively new neuromodulation intervention that is now widely used in clinical practice. Many papers related to tACS have been published in various journals. However, there are no articles that objectively and directly introduce the development trend and research hotspots of tACS. Therefore, the aim of this study is to use CiteSpace to visually analyze the recent tACS-related publications, systematically and in detail summarize the current research hotspots and trends in this field, and provide valuable information for future tACS-related research. Material and methods: The database Web of Science Core Collection Science Citation Index Expanded was used and searched from build to 4 August 2023. Using the CiteSpace to analyze the authors, institutions, countries, keywords, co-cited authors, journals, and references. Results: A total of 677 papers were obtained. From 2008 to 2023, the number of publications shows an increasing trend, albeit with some fluctuations. The most productive country in this field was Germany. The institution with the highest number of publications is Carl von Ossietzky University of Oldenburg (n = 50). According to Bradford's law, 7 journals are considered core journals in the field. Herrmann, CS was the author with the most publications (n = 40), while Antal, A was the author with the highest number of co-citations (n = 391) and betweenness centrality (n = 0.16). Disease, neural mechanisms of the brain and electric stimulation are the major research areas in the field. The effect of tACS in different diseases, multi-site stimulation, combined treatment and evaluation are the future research hotspots and trends. Conclusion: tACS has research value and research potential, and more and more researchers are paying attention to it. The findings of this bibliometric study provide the current status and trends in the clinical research of tACS and may help researchers to identify hotspots s and explore new research directions in this field.

12.
Brain Sci ; 14(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39199443

RESUMEN

(1) Background: Tinnitus involves the conscious awareness of a tonal or composite noise for which there is no identifiable corresponding external acoustic source. For many people, tinnitus is a disorder associated with symptoms of emotional distress, cognitive dysfunction, autonomic arousal, behavioural changes, and functional disability. Many symptoms can be addressed effectively using education or cognitive behavioural therapy. However, there is no treatment that effectively reduces or alters tinnitus-related neurophysiological activity and thus the tinnitus percept. In this systematic review, we evaluated the effectiveness of neuromodulation therapies for tinnitus that explicitly target pathological synchronous neural activity. (2) Methods: Multiple databases were searched for randomised controlled trials of neuromodulation interventions for tinnitus in adults, with 24 trials included. The risk of bias was assessed, and where appropriate, meta-analyses were performed. (3) Results: Few trials used acoustic, vagal nerve, or transcranial alternating current stimulation, or bimodal stimulation techniques, with limited evidence of neuromodulation or clinical effectiveness. Multiple trials of transcranial direct current stimulation (tDCS) were identified, and a synthesis demonstrated a significant improvement in tinnitus symptom severity in favour of tDCS versus control, although heterogeneity was high. (4) Discussion: Neuromodulation for tinnitus is an emerging but promising field. Electrical stimulation techniques are particularly interesting, given recent advances in current flow modelling that can be applied to future studies.

13.
Skin Res Technol ; 30(9): e13898, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39213160

RESUMEN

BACKGROUND: Bipolar microneedling radiofrequency (RF) treatment generates different patterns of thermal reactions, depending on the skin impedance and RF treatment parameters, including the frequency, power, conduction time, settings of sub-pulse packs, and penetrating depth and type of microneedles used. We compared the effect of sequential delivery of 1- and 2-MHz bipolar RF energy to in vivo minipig skin on thermal tissue reaction. METHODS: RF treatments at frequencies of 1 and 2 MHz were sequentially delivered to minipigs' skin in vivo. A histological study was performed to analyze RF-induced skin reactions at 1-h and at 3-, 7-, and 14-days post-treatment. RESULTS: The skin specimens demonstrated that the two different frequencies of RF treatment generated mixed patterns of the peri-electrode coagulative necrosis (PECN) according to the experimental settings and tissue impedance. In the PECN zone, the tissue coagulation induced by the first RF treatment was surrounded by the effect of the later RF treatment at the other RF frequency. In the inter-electrode non-necrotic thermal reaction zone, the effect of the latter RF treatment was widespread and deep through the dermis, which had received RF treatment at the other frequency first. The delivery of pulsed-type RF energy at sub-pulse packs of 6 or 10 provided effective RF delivery over long conduction time without excessive thermal damage of the epidermis. Nonetheless, by sequential delivery of two different RF frequencies, RF-induced tissue reactions were found to be markedly enhanced. CONCLUSION: The sequential delivery of 1- and 2-MHz RF energy induces novel histological patterns of tissue reactions, which can synergistically enhance the thermostimulatory effects of each RF setting. Moreover, variations in patterns of tissue reactions can be generated by regulating the order of frequencies and the number of sub-pulse packs of RF used.


Asunto(s)
Agujas , Piel , Porcinos Enanos , Animales , Porcinos , Piel/efectos de la radiación , Piel/patología , Necrosis , Ondas de Radio , Terapia por Radiofrecuencia/métodos , Terapia por Radiofrecuencia/instrumentación , Inducción Percutánea del Colágeno
14.
Bioengineering (Basel) ; 11(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39199702

RESUMEN

Transcranial alternating current stimulation (tACS) delivered to the primary motor cortex (M1) can increase cortical excitability, entrain neuronal firing patterns, and increase motor skill acquisition in simple motor tasks. The primary aim of this study was to assess the impact of tACS applied to M1 over three consecutive days of practice on the motor learning of a challenging overhand throwing task in young adults. The secondary aim was to examine the influence of tACS on M1 excitability. This study implemented a double-blind, randomized, SHAM-controlled, between-subjects experimental design. A total of 24 healthy young adults were divided into tACS and SHAM groups and performed three identical experimental sessions that comprised blocks of overhand throwing trials of the right dominant arm concurrent with application of tACS to the left M1. Performance in the overhand throwing task was quantified as the endpoint error. Motor evoked potentials (MEPs) were assessed in the right first dorsal interosseus (FDI) muscle with transcranial magnetic stimulation (TMS) to quantify changes in M1 excitability. Endpoint error was significantly decreased in the post-tests compared with the pre-tests when averaged over the three days of practice (p = 0.046), but this decrease was not statistically significant between the tACS and SHAM groups (p = 0.474). MEP amplitudes increased from the pre-tests to the post-tests (p = 0.003), but these increases were also not different between groups (p = 0.409). Overall, the main findings indicated that tACS applied to M1 over multiple days does not enhance motor learning in a complex task to a greater degree than practice alone (SHAM).

15.
Front Psychiatry ; 15: 1419243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211537

RESUMEN

Background: Transcranial alternating current stimulation (tACS) alters cortical excitability with low-intensity alternating current and thereby modulates aberrant brain oscillations. Despite the recent increase in studies investigating the feasibility and efficacy of tACS in treating neuropsychiatric disorders, its mechanisms, as well as optimal stimulation parameters, are not fully understood. Objectives: This systematic review aimed to compile human research on tACS for neuropsychiatric disorders to delineate typical treatment parameters for these conditions and evaluate its outcomes. Methods: A search for published studies and unpublished registered clinical trials was conducted through OVID (MEDLINE, PsycINFO, and Embase), ClinicalTrials.gov, and the International Clinical Trials Registry Platform. Studies utilizing tACS to treat neuropsychiatric disorders in a clinical trial setting were included. Results: In total, 783 published studies and 373 clinical trials were screened; 53 published studies and 70 clinical trials were included. Published studies demonstrated a low risk of bias, as assessed by the Joanna Briggs Institute Critical Appraisal Tools. Neurocognitive, psychotic, and depressive disorders were the most common disorders treated with tACS. Both published studies (58.5%) and registered clinical trials (52%) most commonly utilized gamma frequency bands and tACS was typically administered at an intensity of 2 mA peak-to-peak, once daily for 20 or fewer sessions. Although the targeted brain locations and tACS montages varied across studies based on the outcome measures and specific pathophysiology of the disorders, the dorsolateral prefrontal cortex (DLPFC) was the most common target in both published studies (30.2%) and registered clinical trials (25.6%). Across studies that published results on tACS outcome measures, tACS resulted in enhanced symptoms and/or improvements in overall psychopathology for neurocognitive (all 11 studies), psychotic (11 out of 14 studies), and depressive (7 out of 8 studies) disorders. Additionally, 17 studies reported alterations in the power spectrum of the electroencephalogram around the entrained frequency band at the targeted locations following tACS. Conclusion: Behavioral and cognitive symptoms have been positively impacted by tACS. The most consistent changes were reported in cognitive symptoms following gamma-tACS over the DLPFC. However, the paucity of neuroimaging studies for each neuropsychiatric condition highlights the necessity for replication studies employing biomarker- and mechanism-centric approaches.

16.
Cogn Affect Behav Neurosci ; 24(5): 894-911, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39085585

RESUMEN

Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.


Asunto(s)
Hipocampo , Recuerdo Mental , Corteza Prefrontal , Ritmo Teta , Estimulación Transcraneal de Corriente Directa , Humanos , Masculino , Femenino , Ritmo Teta/fisiología , Adulto Joven , Recuerdo Mental/fisiología , Corteza Prefrontal/fisiología , Adulto , Hipocampo/fisiología
17.
Clin Psychopharmacol Neurosci ; 22(3): 391-404, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39069679

RESUMEN

Brain electrical stimulation, particularly non-invasive brain stimulation (NIBS) techniques such as transcranial electrical stimulation (tES), have emerged as a promising treatment for various psychiatric disorders, including depression, anxiety, and post-traumatic stress disorder. tES techniques, such as transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS), are cost-effective and safe interventions that are designed to affect neuronal circuits in the brain using various modalities. Although tES has shown effectiveness in the treatment of psychiatric disorders, there is a lack of comprehensive papers that consider its clinical implications. Therefore, this review aims to evaluate the clinical implications of tES and provide practical guidance for the treatment of psychiatric illnesses. Moreover, this review provides an overview of tES techniques and their mechanisms of action and summarizes recent clinical studies that have examined the use of tES for psychiatric disorders.

18.
Brain Stimul ; 17(4): 850-859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39029737

RESUMEN

BACKGROUND: Prior work has shown that transcranial alternating current stimulation (tACS) of parietooccipital alpha oscillations (8-14 Hz) can modulate working memory (WM) performance as a function of the phase lag to endogenous oscillations. However, leveraging this effect using real-time phase-tuned tACS has not been feasible so far due to stimulation artifacts preventing continuous phase tracking. OBJECTIVES AND HYPOTHESIS: We aimed to develop a system that tracks and adapts the phase lag between tACS and ongoing parietooccipital alpha oscillations in real-time. We hypothesized that such real-time phase-tuned tACS enhances working memory performance, depending on the phase lag. METHODS: We developed real-time phase-tuned closed-loop amplitude-modulated tACS (CLAM-tACS) targeting parietooccipital alpha oscillations. CLAM-tACS was applied at six different phase lags relative to ongoing alpha oscillations while participants (N = 21) performed a working memory task. To exclude that behavioral effects of CLAM-tACS were mediated by other factors such as sensory co-stimulation, a second group of participants (N = 25) received equivalent stimulation of the forehead. RESULTS: WM accuracy improved in a phase lag dependent manner (p = 0.0350) in the group receiving parietooccipital stimulation, with the strongest enhancement observed at 330° phase lag between tACS and ongoing alpha oscillations (p = 0.00273, d = 0.976). Moreover, across participants, modulation of frontoparietal alpha oscillations correlated both in amplitude (p = 0.0248) and phase (p = 0.0270) with the modulation of WM accuracy. No such effects were observed in the control group receiving frontal stimulation. CONCLUSIONS: Our results demonstrate the feasibility and efficacy of real-time phase-tuned CLAM-tACS in modulating both brain activity and behavior, thereby paving the way for further investigation into brain-behavior relationships and the exploration of innovative therapeutic applications.


Asunto(s)
Ritmo alfa , Memoria a Corto Plazo , Estimulación Transcraneal de Corriente Directa , Humanos , Memoria a Corto Plazo/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Adulto , Ritmo alfa/fisiología , Adulto Joven , Lóbulo Parietal/fisiología , Lóbulo Occipital/fisiología
19.
ACS Appl Mater Interfaces ; 16(30): 39683-39692, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39024473

RESUMEN

In colloidal quantum dot light-emitting diodes (QD-LEDs), replacing organic hole transport layers (HTLs) with their inorganic counterparts is expected to yield distinct advantages due to their inherent material robustness. However, despite the promising characteristics of all-inorganic QD-LEDs, some challenges persist in achieving stable operation; for example, the electron overflow toward the inorganic HTL and charge accumulation within working devices return a temporal inconsistency in device characteristics. To address these challenges, we propose an operational approach that employs an alternating-current (AC) in all-inorganic QD-LEDs. We carry out comprehensive studies on the optoelectrical characteristics of all-inorganic QD-LEDs under direct-current (DC) or AC operation and demonstrate that AC operation can facilitate efficient charge carrier recombination within the QD emissive layer, leading to improved device efficiency and temporally invariant optoelectronic characteristics. Leveraging the intrinsic material robustness of inorganic charge transport layers (CTLs), our current study suggests a promising pathway toward enhancing the performance and stability of QD-LEDs, particularly for futuristic display applications.

20.
Psychophysiology ; : e14651, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997805

RESUMEN

Non-invasive brain stimulation techniques offer therapeutic potential for neurological and psychiatric disorders. However, current methods are often limited in their stimulation depth. The novel transcranial temporal interference stimulation (tTIS) aims to overcome this limitation by non-invasively targeting deeper brain regions. In this study, we aimed to evaluate the efficacy of tTIS in modulating alpha activity during a mental rotation task. The effects of tTIS were compared with transcranial alternating current stimulation (tACS) and a sham control. Participants were randomly assigned to a tTIS, tACS, or sham group. They performed alternating blocks of resting and mental rotation tasks before, during, and after stimulation. During the stimulation blocks, participants received 20 min of stimulation adjusted to their individual alpha frequency (IAF). We assessed shifts in resting state alpha power, event-related desynchronization (ERD) of alpha activity during mental rotation, as well as resulting improvements in behavioral performance. Our results indicate tTIS and tACS to be effective in modulating cortical alpha activity during mental rotation, leading to an increase in ERD from pre- to poststimulation as well as compared to sham stimulation. However, this increase in ERD was not correlated with enhanced mental rotation performance, and resting state alpha power remained unchanged. Our findings underscore the complex nature of tTIS and tACS efficacy, indicating that stimulation effects are more observable during active cognitive tasks, while their impacts are less pronounced on resting neuronal systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA